Recherche avancée

Médias (91)

Autres articles (30)

  • Librairies et binaires spécifiques au traitement vidéo et sonore

    31 janvier 2010, par

    Les logiciels et librairies suivantes sont utilisées par SPIPmotion d’une manière ou d’une autre.
    Binaires obligatoires FFMpeg : encodeur principal, permet de transcoder presque tous les types de fichiers vidéo et sonores dans les formats lisibles sur Internet. CF ce tutoriel pour son installation ; Oggz-tools : outils d’inspection de fichiers ogg ; Mediainfo : récupération d’informations depuis la plupart des formats vidéos et sonores ;
    Binaires complémentaires et facultatifs flvtool2 : (...)

  • Support audio et vidéo HTML5

    10 avril 2011

    MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
    Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
    Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
    Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...)

  • De l’upload à la vidéo finale [version standalone]

    31 janvier 2010, par

    Le chemin d’un document audio ou vidéo dans SPIPMotion est divisé en trois étapes distinctes.
    Upload et récupération d’informations de la vidéo source
    Dans un premier temps, il est nécessaire de créer un article SPIP et de lui joindre le document vidéo "source".
    Au moment où ce document est joint à l’article, deux actions supplémentaires au comportement normal sont exécutées : La récupération des informations techniques des flux audio et video du fichier ; La génération d’une vignette : extraction d’une (...)

Sur d’autres sites (3066)

  • Why JPEG image looks different in two videos ?

    28 septembre 2015, par user606521

    I have two frames :

    f1.jpg
    f1.jpg
    f2.jpg
    f2.jpg

    And I am creating two videos :

    ./ffmpeg -i ./f%d.jpg -r 30 -y m1.mp4 # both frames 1 and 2
    ./ffmpeg -i ./f2.jpg -r 30 -y m2.mp4 # only frame 2

    For some reason frame 2 looks different in these two videos

    Frame 2 from m1.mp4 :

    $ ./ffmpeg -i m1.mp4 out1_%d.jpg
    ffmpeg version 2.7.2 Copyright (c) 2000-2015 the FFmpeg developers
     built with llvm-gcc 4.2.1 (LLVM build 2336.11.00)
     configuration: --prefix=/Volumes/Ramdisk/sw --enable-gpl --enable-pthreads --enable-version3 --enable-libspeex --enable-libvpx --disable-decoder=libvpx --enable-libmp3lame --enable-libtheora --enable-libvorbis --enable-libx264 --enable-avfilter --enable-libopencore_amrwb --enable-libopencore_amrnb --enable-filters --enable-libgsm --enable-libvidstab --enable-libx265 --disable-doc --arch=x86_64 --enable-runtime-cpudetect
     libavutil      54. 27.100 / 54. 27.100
     libavcodec     56. 41.100 / 56. 41.100
     libavformat    56. 36.100 / 56. 36.100
     libavdevice    56.  4.100 / 56.  4.100
     libavfilter     5. 16.101 /  5. 16.101
     libswscale      3.  1.101 /  3.  1.101
     libswresample   1.  2.100 /  1.  2.100
     libpostproc    53.  3.100 / 53.  3.100
    Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'm1.mp4':
     Metadata:
       major_brand     : isom
       minor_version   : 512
       compatible_brands: isomiso2avc1mp41
       encoder         : Lavf56.36.100
     Duration: 00:00:00.07, start: 0.000000, bitrate: 478 kb/s
       Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 980x100, 381 kb/s, 30 fps, 30 tbr, 15360 tbn, 60 tbc (default)
       Metadata:
         handler_name    : VideoHandler
    [swscaler @ 0x7f7f9a000600] deprecated pixel format used, make sure you did set range correctly
    Output #0, image2, to 'out1_%d.jpg':
     Metadata:
       major_brand     : isom
       minor_version   : 512
       compatible_brands: isomiso2avc1mp41
       encoder         : Lavf56.36.100
       Stream #0:0(und): Video: mjpeg, yuvj420p(pc), 980x100, q=2-31, 200 kb/s, 30 fps, 30 tbn, 30 tbc (default)
       Metadata:
         handler_name    : VideoHandler
         encoder         : Lavc56.41.100 mjpeg
    Stream mapping:
     Stream #0:0 -> #0:0 (h264 (native) -> mjpeg (native))
    Press [q] to stop, [?] for help
    frame=    2 fps=0.0 q=1.6 Lsize=N/A time=00:00:00.06 bitrate=N/A    
    video:6kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: unknown

    f1_out.jpg

    Frame 2 from m2.mp4 :

    $ ./ffmpeg -i m2.mp4 out2_%d.jpg
    ffmpeg version 2.7.2 Copyright (c) 2000-2015 the FFmpeg developers
     built with llvm-gcc 4.2.1 (LLVM build 2336.11.00)
     configuration: --prefix=/Volumes/Ramdisk/sw --enable-gpl --enable-pthreads --enable-version3 --enable-libspeex --enable-libvpx --disable-decoder=libvpx --enable-libmp3lame --enable-libtheora --enable-libvorbis --enable-libx264 --enable-avfilter --enable-libopencore_amrwb --enable-libopencore_amrnb --enable-filters --enable-libgsm --enable-libvidstab --enable-libx265 --disable-doc --arch=x86_64 --enable-runtime-cpudetect
     libavutil      54. 27.100 / 54. 27.100
     libavcodec     56. 41.100 / 56. 41.100
     libavformat    56. 36.100 / 56. 36.100
     libavdevice    56.  4.100 / 56.  4.100
     libavfilter     5. 16.101 /  5. 16.101
     libswscale      3.  1.101 /  3.  1.101
     libswresample   1.  2.100 /  1.  2.100
     libpostproc    53.  3.100 / 53.  3.100
    Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'm2.mp4':
     Metadata:
       major_brand     : isom
       minor_version   : 512
       compatible_brands: isomiso2avc1mp41
       encoder         : Lavf56.36.100
     Duration: 00:00:00.03, start: 0.000000, bitrate: 824 kb/s
       Stream #0:0(und): Video: h264 (High) (avc1 / 0x31637661), yuvj420p(pc), 980x100 [SAR 1:1 DAR 49:5], 648 kb/s, 30 fps, 30 tbr, 15360 tbn, 60 tbc (default)
       Metadata:
         handler_name    : VideoHandler
    Output #0, image2, to 'out2_%d.jpg':
     Metadata:
       major_brand     : isom
       minor_version   : 512
       compatible_brands: isomiso2avc1mp41
       encoder         : Lavf56.36.100
       Stream #0:0(und): Video: mjpeg, yuvj420p(pc), 980x100 [SAR 1:1 DAR 49:5], q=2-31, 200 kb/s, 30 fps, 30 tbn, 30 tbc (default)
       Metadata:
         handler_name    : VideoHandler
         encoder         : Lavc56.41.100 mjpeg
    Stream mapping:
     Stream #0:0 -> #0:0 (h264 (native) -> mjpeg (native))
    Press [q] to stop, [?] for help
    frame=    1 fps=0.0 q=1.6 Lsize=N/A time=00:00:00.03 bitrate=N/A    
    video:4kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: unknown

    f2_out.jpg

    It seems that frame 2 looks different when combined with frame 1 in a video. One thing I noticed that when dumping frames from m1.mp4 (two frames combined) there is a warning in ffmpeg output :

    [swscaler @ 0x7f7f9a000600] deprecated pixel format used, make sure you did set range correctly

    Also two frame images have same dimmensions (980x100) and their format seems to be same :

    $ file -b f1.jpg
    JPEG image data, JFIF standard 1.01, comment: "CS=ITU601??"
    $ file -b f2.jpg
    JPEG image data, JFIF standard 1.01

    So why this is happening ? I am struggling with this issue for quite a long time - for some reason some JPEGs somehow are in different "format ?" than others and make mess in videos...


    You can download first two images included in this question and test commands on your own.


    $ identify -verbose f1.jpg
    Image: f1.jpg
     Format: JPEG (Joint Photographic Experts Group JFIF format)
     Mime type: image/jpeg
     Class: DirectClass
     Geometry: 980x100+0+0
     Resolution: 552x551
     Print size: 1.77536x0.181488
     Units: PixelsPerInch
     Type: Palette
     Endianess: Undefined
     Colorspace: sRGB
     Depth: 8-bit
     Channel depth:
       red: 8-bit
       green: 8-bit
       blue: 8-bit
     Channel statistics:
       Red:
         min: 189 (0.741176)
         max: 233 (0.913725)
         mean: 208.261 (0.81671)
         standard deviation: 14.1741 (0.0555848)
         kurtosis: -1.40078
         skewness: 0.332664
       Green:
         min: 189 (0.741176)
         max: 233 (0.913725)
         mean: 208.261 (0.81671)
         standard deviation: 14.1741 (0.0555848)
         kurtosis: -1.40078
         skewness: 0.332664
       Blue:
         min: 189 (0.741176)
         max: 233 (0.913725)
         mean: 208.26 (0.816706)
         standard deviation: 14.1756 (0.0555905)
         kurtosis: -1.40068
         skewness: 0.332424
     Image statistics:
       Overall:
         min: 189 (0.741176)
         max: 233 (0.913725)
         mean: 208.261 (0.816709)
         standard deviation: 14.1746 (0.0555867)
         kurtosis: -1.40075
         skewness: 0.332584
     Colors: 47
     Histogram:
          368: (189,189,189) #BDBDBD grey74
         1984: (190,190,190) #BEBEBE grey
           28: (191,191,189) #BFBFBD srgb(191,191,189)
         3780: (191,191,191) #BFBFBF grey75
           28: (192,192,190) #C0C0BE srgb(192,192,190)
         6628: (192,192,192) #C0C0C0 silver
         5664: (193,193,193) #C1C1C1 srgb(193,193,193)
         4608: (194,194,194) #C2C2C2 grey76
         4480: (195,195,195) #C3C3C3 srgb(195,195,195)
         3328: (196,196,196) #C4C4C4 grey77
         2592: (197,197,197) #C5C5C5 srgb(197,197,197)
         3072: (198,198,198) #C6C6C6 srgb(198,198,198)
         2272: (199,199,199) #C7C7C7 grey78
         2112: (200,200,200) #C8C8C8 srgb(200,200,200)
         2112: (201,201,201) #C9C9C9 grey79
         1920: (202,202,202) #CACACA srgb(202,202,202)
         1728: (203,203,203) #CBCBCB srgb(203,203,203)
         1760: (204,204,204) #CCCCCC grey80
         1696: (205,205,205) #CDCDCD srgb(205,205,205)
         1248: (206,206,206) #CECECE srgb(206,206,206)
         1536: (207,207,207) #CFCFCF grey81
         1504: (208,208,208) #D0D0D0 srgb(208,208,208)
         1344: (209,209,209) #D1D1D1 grey82
         1536: (210,210,210) #D2D2D2 srgb(210,210,210)
         1472: (211,211,211) #D3D3D3 LightGray
         1088: (212,212,212) #D4D4D4 grey83
         1472: (213,213,213) #D5D5D5 srgb(213,213,213)
         1536: (214,214,214) #D6D6D6 grey84
         1344: (215,215,215) #D7D7D7 srgb(215,215,215)
         1184: (216,216,216) #D8D8D8 srgb(216,216,216)
         1408: (217,217,217) #D9D9D9 grey85
         1472: (218,218,218) #DADADA srgb(218,218,218)
         1216: (219,219,219) #DBDBDB grey86
         1280: (220,220,220) #DCDCDC gainsboro
         1536: (221,221,221) #DDDDDD srgb(221,221,221)
         1472: (222,222,222) #DEDEDE grey87
         1600: (223,223,223) #DFDFDF srgb(223,223,223)
         1696: (224,224,224) #E0E0E0 grey88
         1792: (225,225,225) #E1E1E1 srgb(225,225,225)
         1728: (226,226,226) #E2E2E2 srgb(226,226,226)
         1952: (227,227,227) #E3E3E3 grey89
         2272: (228,228,228) #E4E4E4 srgb(228,228,228)
         2752: (229,229,229) #E5E5E5 grey90
         4512: (230,230,230) #E6E6E6 srgb(230,230,230)
         4672: (231,231,231) #E7E7E7 srgb(231,231,231)
          640: (232,232,232) #E8E8E8 grey91
          576: (233,233,233) #E9E9E9 srgb(233,233,233)
     Rendering intent: Perceptual
     Gamma: 0.454545
     Chromaticity:
       red primary: (0.64,0.33)
       green primary: (0.3,0.6)
       blue primary: (0.15,0.06)
       white point: (0.3127,0.329)
     Background color: white
     Border color: srgb(223,223,223)
     Matte color: grey74
     Transparent color: black
     Interlace: None
     Intensity: Undefined
     Compose: Over
     Page geometry: 980x100+0+0
     Dispose: Undefined
     Iterations: 0
     Compression: JPEG
     Orientation: Undefined
     Properties:
       comment: CS=ITU601
       date:create: 2015-09-28T21:47:26+02:00
       date:modify: 2015-09-28T21:47:26+02:00
       jpeg:colorspace: 2
       jpeg:quality: 92
       jpeg:sampling-factor: 2x2,1x1,1x1
       signature: ca599d8ad07c79b36837cb9f4811d83e236b8d4a4cdfada8d60c4aa330f28f38
     Artifacts:
       filename: f1.jpg
       verbose: true
     Tainted: False
     Filesize: 1.36KB
     Number pixels: 98K
     Pixels per second: 9.8MB
     User time: 0.000u
     Elapsed time: 0:01.009
     Version: ImageMagick 6.8.7-0 2013-10-28 Q16 http://www.imagemagick.org

    $ identify -verbose f2.jpg
    Image: f2.jpg
     Format: JPEG (Joint Photographic Experts Group JFIF format)
     Mime type: image/jpeg
     Class: DirectClass
     Geometry: 980x100+0+0
     Resolution: 72x72
     Print size: 13.6111x1.38889
     Units: PixelsPerInch
     Type: Palette
     Endianess: Undefined
     Colorspace: sRGB
     Depth: 8-bit
     Channel depth:
       red: 8-bit
       green: 8-bit
       blue: 8-bit
     Channel statistics:
       Red:
         min: 186 (0.729412)
         max: 254 (0.996078)
         mean: 242.844 (0.952329)
         standard deviation: 11.0845 (0.0434688)
         kurtosis: 4.24417
         skewness: -2.17102
       Green:
         min: 186 (0.729412)
         max: 254 (0.996078)
         mean: 242.844 (0.952329)
         standard deviation: 11.0845 (0.0434688)
         kurtosis: 4.24417
         skewness: -2.17102
       Blue:
         min: 186 (0.729412)
         max: 254 (0.996078)
         mean: 242.842 (0.952323)
         standard deviation: 11.0886 (0.0434848)
         kurtosis: 4.24235
         skewness: -2.17103
     Image statistics:
       Overall:
         min: 186 (0.729412)
         max: 254 (0.996078)
         mean: 242.843 (0.952327)
         standard deviation: 11.0859 (0.0434741)
         kurtosis: 4.24356
         skewness: -2.17102
     Colors: 91
     Histogram:
            2: (186,186,186) #BABABA grey73
            2: (187,187,187) #BBBBBB srgb(187,187,187)
            1: (189,189,189) #BDBDBD grey74
            5: (190,190,190) #BEBEBE grey
            2: (191,191,191) #BFBFBF grey75
           20: (192,192,192) #C0C0C0 silver
           28: (193,193,193) #C1C1C1 srgb(193,193,193)
           37: (194,194,194) #C2C2C2 grey76
           46: (195,195,195) #C3C3C3 srgb(195,195,195)
           59: (196,196,196) #C4C4C4 grey77
          108: (197,197,197) #C5C5C5 srgb(197,197,197)
          134: (198,198,198) #C6C6C6 srgb(198,198,198)
          145: (199,199,199) #C7C7C7 grey78
          188: (200,200,200) #C8C8C8 srgb(200,200,200)
          230: (201,201,201) #C9C9C9 grey79
          241: (202,202,202) #CACACA srgb(202,202,202)
          236: (203,203,203) #CBCBCB srgb(203,203,203)
          252: (204,204,204) #CCCCCC grey80
          240: (205,205,205) #CDCDCD srgb(205,205,205)
          243: (206,206,206) #CECECE srgb(206,206,206)
            1: (207,207,205) #CFCFCD srgb(207,207,205)
          250: (207,207,207) #CFCFCF grey81
            1: (208,208,206) #D0D0CE srgb(208,208,206)
          267: (208,208,208) #D0D0D0 srgb(208,208,208)
            2: (209,209,207) #D1D1CF srgb(209,209,207)
          226: (209,209,209) #D1D1D1 grey82
            3: (210,210,208) #D2D2D0 srgb(210,210,208)
          193: (210,210,210) #D2D2D2 srgb(210,210,210)
            5: (211,211,209) #D3D3D1 srgb(211,211,209)
          215: (211,211,211) #D3D3D3 LightGray
            7: (212,212,210) #D4D4D2 srgb(212,212,210)
          227: (212,212,212) #D4D4D4 grey83
           11: (213,213,211) #D5D5D3 srgb(213,213,211)
          250: (213,213,213) #D5D5D5 srgb(213,213,213)
            4: (214,214,212) #D6D6D4 srgb(214,214,212)
          291: (214,214,214) #D6D6D6 grey84
           16: (215,215,213) #D7D7D5 srgb(215,215,213)
          307: (215,215,215) #D7D7D7 srgb(215,215,215)
            1: (216,216,214) #D8D8D6 srgb(216,216,214)
          371: (216,216,216) #D8D8D8 srgb(216,216,216)
            4: (217,217,215) #D9D9D7 srgb(217,217,215)
          355: (217,217,217) #D9D9D9 grey85
            3: (218,218,216) #DADAD8 srgb(218,218,216)
          398: (218,218,218) #DADADA srgb(218,218,218)
            3: (219,219,217) #DBDBD9 srgb(219,219,217)
          404: (219,219,219) #DBDBDB grey86
            5: (220,220,218) #DCDCDA srgb(220,220,218)
          435: (220,220,220) #DCDCDC gainsboro
            1: (221,221,219) #DDDDDB srgb(221,221,219)
          489: (221,221,221) #DDDDDD srgb(221,221,221)
            2: (222,222,220) #DEDEDC srgb(222,222,220)
          569: (222,222,222) #DEDEDE grey87
            1: (223,223,221) #DFDFDD srgb(223,223,221)
          552: (223,223,223) #DFDFDF srgb(223,223,223)
            2: (224,224,222) #E0E0DE srgb(224,224,222)
          595: (224,224,224) #E0E0E0 grey88
            2: (225,225,223) #E1E1DF srgb(225,225,223)
          645: (225,225,225) #E1E1E1 srgb(225,225,225)
          736: (226,226,226) #E2E2E2 srgb(226,226,226)
            3: (227,227,225) #E3E3E1 srgb(227,227,225)
          646: (227,227,227) #E3E3E3 grey89
            1: (228,228,226) #E4E4E2 srgb(228,228,226)
          707: (228,228,228) #E4E4E4 srgb(228,228,228)
            1: (229,229,227) #E5E5E3 srgb(229,229,227)
          667: (229,229,229) #E5E5E5 grey90
            1: (230,230,228) #E6E6E4 srgb(230,230,228)
          759: (230,230,230) #E6E6E6 srgb(230,230,230)
          767: (231,231,231) #E7E7E7 srgb(231,231,231)
          788: (232,232,232) #E8E8E8 grey91
          862: (233,233,233) #E9E9E9 srgb(233,233,233)
          880: (234,234,234) #EAEAEA srgb(234,234,234)
          889: (235,235,235) #EBEBEB grey92
          863: (236,236,236) #ECECEC srgb(236,236,236)
          868: (237,237,237) #EDEDED grey93
         1032: (238,238,238) #EEEEEE srgb(238,238,238)
          878: (239,239,239) #EFEFEF srgb(239,239,239)
         1083: (240,240,240) #F0F0F0 grey94
         1035: (241,241,241) #F1F1F1 srgb(241,241,241)
         1247: (242,242,242) #F2F2F2 grey95
         1610: (243,243,243) #F3F3F3 srgb(243,243,243)
         2084: (244,244,244) #F4F4F4 srgb(244,244,244)
         3473: (245,245,245) #F5F5F5 grey96
         6350: (246,246,246) #F6F6F6 srgb(246,246,246)
         9152: (247,247,247) #F7F7F7 grey97
        14755: (248,248,248) #F8F8F8 srgb(248,248,248)
        21183: (249,249,249) #F9F9F9 srgb(249,249,249)
        12507: (250,250,250) #FAFAFA grey98
         2516: (251,251,251) #FBFBFB srgb(251,251,251)
          305: (252,252,252) #FCFCFC grey99
           16: (253,253,253) #FDFDFD srgb(253,253,253)
            4: (254,254,254) #FEFEFE srgb(254,254,254)
     Rendering intent: Perceptual
     Gamma: 0.454545
     Chromaticity:
       red primary: (0.64,0.33)
       green primary: (0.3,0.6)
       blue primary: (0.15,0.06)
       white point: (0.3127,0.329)
     Background color: white
     Border color: srgb(223,223,223)
     Matte color: grey74
     Transparent color: black
     Interlace: None
     Intensity: Undefined
     Compose: Over
     Page geometry: 980x100+0+0
     Dispose: Undefined
     Iterations: 0
     Compression: JPEG
     Orientation: Undefined
     Properties:
       date:create: 2015-09-28T21:48:30+02:00
       date:modify: 2015-09-28T21:48:30+02:00
       jpeg:colorspace: 2
       jpeg:quality: 92
       jpeg:sampling-factor: 2x2,1x1,1x1
       signature: f718ab157fae4ff0395eaf07a0165897fd9de558eaed00586530690d39e5ed23
     Artifacts:
       filename: f2.jpg
       verbose: true
     Tainted: False
     Filesize: 4.32KB
     Number pixels: 98K
     Pixels per second: 0B
     User time: 0.000u
     Elapsed time: 0:01.000
     Version: ImageMagick 6.8.7-0 2013-10-28 Q16 http://www.imagemagick.org
  • Smooth scale animation in ffmpeg

    3 août 2018, par Makes

    How can I smooth the animations of scale ?

    ffmpeg -i bg.mp4 -loop 1 -i blank.png -filter_complex "[1:v]drawtext=fontfile=ariblk.ttf:text=EXAMPLE:x=(main_w-text_w)/2:y=(main_h-max_glyph_a)/2:fontcolor=0xFFFFFF:fontsize=200:alpha=1[txt];[txt]sendcmd=f=data.cmd,scale=w=0:h=-1[txtscale];[0:v][txtscale]overlay=(main_w-overlay_w)/2:(main_h-overlay_h)/2:shortest=1" preview.mp4

    Video resolution 1280 * 720 -> scale w = ’12.8 * X’, X - scale value (data from the After Effects)

    data.cmd

    0   scale w '   12.8*   72  '; 0.040    scale w '   12.8*   72.3944 '; 0.080    scale w '   12.8*   72.7887 '; 0.120    scale w '   12.8*   73.1831 '; 0.160    scale w '   12.8*   73.5775 '; 0.200    scale w '   12.8*   73.9718 '; 0.240    scale w '   12.8*   74.3662 '; 0.280    scale w '   12.8*   74.7606 '; 0.320    scale w '   12.8*   75.1549 '; 0.360    scale w '   12.8*   75.5493 '; 0.400    scale w '   12.8*   75.9437 '; 0.440    scale w '   12.8*   76.338  '; 0.480    scale w '   12.8*   76.7324 '; 0.520    scale w '   12.8*   77.1268 '; 0.560    scale w '   12.8*   77.5211 '; 0.600    scale w '   12.8*   77.9155 '; 0.640    scale w '   12.8*   78.3099 '; 0.680    scale w '   12.8*   78.7042 '; 0.720    scale w '   12.8*   79.0986 '; 0.760    scale w '   12.8*   79.493  '; 0.800    scale w '   12.8*   79.8873 '; 0.840    scale w '   12.8*   80.2817 '; 0.880    scale w '   12.8*   80.6761 '; 0.920    scale w '   12.8*   81.0704 '; 0.960    scale w '   12.8*   81.4648 '; 1.000    scale w '   12.8*   81.8592 '; 1.040    scale w '   12.8*   82.2535 '; 1.080    scale w '   12.8*   82.6479 '; 1.120    scale w '   12.8*   83.0423 '; 1.160    scale w '   12.8*   83.4366 '; 1.200    scale w '   12.8*   83.831  '; 1.240    scale w '   12.8*   84.2254 '; 1.280    scale w '   12.8*   84.6197 '; 1.320    scale w '   12.8*   85.0141 '; 1.360    scale w '   12.8*   85.4085 '; 1.400    scale w '   12.8*   85.8028 '; 1.440    scale w '   12.8*   86.1972 '; 1.480    scale w '   12.8*   86.5915 '; 1.520    scale w '   12.8*   86.9859 '; 1.560    scale w '   12.8*   87.3803 '; 1.600    scale w '   12.8*   87.7746 '; 1.640    scale w '   12.8*   88.169  '; 1.680    scale w '   12.8*   88.5634 '; 1.720    scale w '   12.8*   88.9577 '; 1.760    scale w '   12.8*   89.3521 '; 1.800    scale w '   12.8*   89.7465 '; 1.840    scale w '   12.8*   90.1408 '; 1.880    scale w '   12.8*   90.5352 '; 1.920    scale w '   12.8*   90.9296 '; 1.960    scale w '   12.8*   91.3239 '; 2.000    scale w '   12.8*   91.7183 '; 2.040    scale w '   12.8*   92.1127 '; 2.080    scale w '   12.8*   92.507  '; 2.120    scale w '   12.8*   92.9014 '; 2.160    scale w '   12.8*   93.2958 '; 2.200    scale w '   12.8*   93.6901 '; 2.240    scale w '   12.8*   94.0845 '; 2.280    scale w '   12.8*   94.4789 '; 2.320    scale w '   12.8*   94.8732 '; 2.360    scale w '   12.8*   95.2676 '; 2.400    scale w '   12.8*   95.662  '; 2.440    scale w '   12.8*   96.0563 '; 2.480    scale w '   12.8*   96.4507 '; 2.520    scale w '   12.8*   96.8451 '; 2.560    scale w '   12.8*   97.2394 '; 2.600    scale w '   12.8*   97.6338 '; 2.640    scale w '   12.8*   98.0282 '; 2.680    scale w '   12.8*   98.4225 '; 2.720    scale w '   12.8*   98.8169 '; 2.760    scale w '   12.8*   99.2113 '; 2.800    scale w '   12.8*   99.6056 '; 2.840    scale w '   12.8*   100 ';

    enter image description here

  • What Is Data Misuse & How to Prevent It ? (With Examples)

    13 mai 2024, par Erin

    Your data is everywhere. Every time you sign up for an email list, log in to Facebook or download a free app onto your smartphone, your data is being taken.

    This can scare customers and users who fear their data will be misused.

    While data can be a powerful asset for your business, it’s important you manage it well, or you could be in over your head.

    In this guide, we break down what data misuse is, what the different types are, some examples of major data misuse and how you can prevent it so you can grow your brand sustainably.

    What is data misuse ?

    Data is a good thing.

    It helps analysts and marketers understand their customers better so they can serve them relevant information, products and services to improve their lives.

    But it can quickly become a bad thing for both the customers and business owners when it’s mishandled and misused.

    What is data misuse?

    Data misuse is when a business uses data outside of the agreed-upon terms. When companies collect data, they need to legally communicate how that data is being used. 

    Who or what determines when data is being misused ?

    Several bodies :

    • User agreements
    • Data privacy laws
    • Corporate policies
    • Industry regulations

    There are certain laws and regulations around how you can collect and use data. Failure to comply with these guidelines and rules can result in several consequences, including legal action.

    Keep reading to discover the different types of data misuse and how to prevent it.

    3 types of data misuse

    There are a few different types of data misuse.

    If you fail to understand them, you could face penalties, legal trouble and a poor brand reputation.

    3 types of data misuse.

    1. Commingling

    When you collect data, you need to ensure you’re using it for the right purpose. Commingling is when an organisation collects data from a specific audience for a specific reason but then uses the data for another purpose.

    One example of commingling is if a company shares sensitive customer data with another company. In many cases, sister companies will share data even if the terms of the data collection didn’t include that clause.

    Another example is if someone collects data for academic purposes like research but then uses the data later on for marketing purposes to drive business growth in a for-profit company.

    In either case, the company went wrong by not being clear on what the data would be used for. You must communicate with your audience exactly how the data will be used.

    2. Personal benefit

    The second common way data is misused in the workplace is through “personal benefit.” This is when someone with access to data abuses it for their own gain.

    The most common example of personal benefit data muse is when an employee misuses internal data.

    While this may sound like each instance of data misuse is caused by malicious intent, that’s not always the case. Data misuse can still exist even if an employee didn’t have any harmful intent behind their actions. 

    One of the most common examples is when an employee mistakenly moves data from a company device to personal devices for easier access.

    3. Ambiguity

    As mentioned above, when discussing commingling, a company must only use data how they say they will use it when they collect it.

    A company can misuse data when they’re unclear on how the data is used. Ambiguity is when a company fails to disclose how user data is being collected and used.

    This means communicating poorly on how the data will be used can be wrong and lead to misuse.

    One of the most common ways this happens is when a company doesn’t know how to use the data, so they can’t give a specific reason. However, this is still considered misuse, as companies need to disclose exactly how they will use the data they collect from their customers.

    Laws on data misuse you need to follow

    Data misuse can lead to poor reputations and penalties from big tech companies. For example, if you step outside social media platforms’ guidelines, you could be suspended, banned or shadowbanned.

    But what’s even more important is certain types of data misuse could mean you’re breaking laws worldwide. Here are some laws on data misuse you need to follow to avoid legal trouble :

    General Data Protection Regulation (GDPR)

    The GDPR, or General Data Protection Regulation, is a law within the European Union (EU) that went into effect in 2018.

    The GDPR was implemented to set a standard and improve data protection in Europe. It was also established to increase accountability and transparency for data breaches within businesses and organisations.

    The purpose of the GDPR is to protect residents within the European Union.

    The penalties for breaking GDPR laws are fines up to 20 million Euros or 4% of global revenues (whatever the higher amount is).

    The GDPR doesn’t just affect companies in Europe. You can break the GDPR’s laws regardless of where your organisation is located worldwide. As long as your company collects, processes or uses the personal data of any EU resident, you’re subject to the GDPR’s rules.

    If you want to track user data to grow your business, you need to ensure you’re following international data laws. Tools like Matomo—the world’s leading privacy-friendly web analytics solution—can help you achieve GDPR compliance and maintain it.

    With Matomo, you can confidently enhance your website’s performance, knowing that you’re adhering to data protection laws. 

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    California Consumer Privacy Act (CCPA)

    The California Consumer Privacy Act (CCPA) is another important data law companies worldwide must follow.

    Like GDPR, the CCPA is a data privacy law established to protect residents of a certain region — in this case, residents of California in the United States.

    The CCPA was implemented in 2020, and businesses worldwide can be penalised for breaking the regulations. For example, if you’re found violating the CCPA, you could be fined $7,500 for each intentional violation.

    If you have unintentional violations, you could still be fined, but at a lesser fee of $2,500.

    The Gramm-Leach-Bliley Act (GLBA)

    If your business is located within the United States, then you’re subject to a federal law implemented in 1999 called The Gramm-Leach-Bliley Act (GLB Act or GLBA).

    The GLBA is also known as the Financial Modernization Act of 1999. Its purpose is to control the way American financial institutions handle consumer data. 

    In the GLBA, there are three sections :

    1. The Financial Privacy Rule : regulates the collection and disclosure of private financial data.
    2. Safeguards Rule : Financial institutions must establish security programs to protect financial data.
    3. Pretexting Provisions : Prohibits accessing private data using false pretences.

    The GLBA also requires financial institutions in the U.S. to give their customers written privacy policy communications that explain their data-sharing practices.

    4 examples of data misuse in real life

    If you want to see what data misuse looks like in real life, look no further.

    Big tech is central to some of the biggest data misuses and scandals.

    4 examples of data misuse in real life.

    Here are a few examples of data misuse in real life you should take note of to avoid a similar scenario :

    1. Facebook election interference

    One of history’s most famous examples of data misuse is the Facebook and Cambridge Analytica scandal in 2018.

    During the 2018 U.S. midterm elections, Cambridge Analytica, a political consulting firm, acquired personal data from Facebook users that was said to have been collected for academic research.

    Instead, Cambridge Analytica used data from roughly 87 million Facebook users. 

    This is a prime example of commingling.

    The result ? Cambridge Analytica was left bankrupt and dissolved, and Facebook was fined $5 billion by the Federal Trade Commission (FTC).

    2. Uber “God View” tracking

    Another big tech company, Uber, was caught misusing data a decade ago. 

    Why ?

    Uber implemented a new feature for its employees in 2014 called “God View.”

    The tool enabled Uber employees to track riders using their app. The problem was that they were watching them without the users’ permission. “God View” lets Uber spy on their riders to see their movements and locations.

    The FTC ended up slapping them with a major lawsuit, and as part of their settlement agreement, Uber agreed to have an outside firm audit their privacy practices between 2014 and 2034.

    Uber "God View."

    3. Twitter targeted ads overstep

    In 2019, Twitter was found guilty of allowing advertisers to access its users’ personal data to improve advertisement targeting.

    Advertisers were given access to user email addresses and phone numbers without explicit permission from the users. The result was that Twitter ad buyers could use this contact information to cross-reference with Twitter’s data to serve ads to them.

    Twitter stated that the data leak was an internal error. 

    4. Google location tracking

    In 2020, Google was found guilty of not explicitly disclosing how it’s using its users’ personal data, which is an example of ambiguity.

    The result ?

    The French data protection authority fined Google $57 million.

    8 ways to prevent data misuse in your company

    Now that you know the dangers of data misuse and its associated penalties, it’s time to understand how you can prevent it in your company.

    How to prevent data misuse in your company.

    Here are eight ways you can prevent data misuse :

    1. Track data with an ethical web analytics solution

    You can’t get by in today’s business world without tracking data. The question is whether you’re tracking it safely or not.

    If you want to ensure you aren’t getting into legal trouble with data misuse, then you need to use an ethical web analytics solution like Matomo.

    With it, you can track and improve your website performance while remaining GDPR-compliant and respecting user privacy. Unlike other web analytics solutions that monetise your data and auction it off to advertisers, with Matomo, you own your data.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    2. Don’t share data with big tech

    As the data misuse examples above show, big tech companies often violate data privacy laws.

    And while most of these companies, like Google, appear to be convenient, they’re often inconvenient (and much worse), especially regarding data leaks, privacy breaches and the sale of your data to advertisers.

    Have you ever heard the phrase : “You are the product ?” When it comes to big tech, chances are if you’re getting it for free, you (and your data) are the products they’re selling.

    The best way to stop sharing data with big tech is to stop using platforms like Google. For more ideas on different Google product alternatives, check out this list of Google alternatives.

    3. Identity verification 

    Data misuse typically isn’t a company-wide ploy. Often, it’s the lack of security structure and systems within your company. 

    An important place to start is to ensure proper identity verification for anyone with access to your data.

    4. Access management

    After establishing identity verification, you should ensure you have proper access management set up. For example, you should only give specific access to specific roles in your company to prevent data misuse.

    5. Activity logs and monitoring

    One way to track data misuse or breaches is by setting up activity logs to ensure you can see who is accessing certain types of data and when they’re accessing it.

    You should ensure you have a team dedicated to continuously monitoring these logs to catch anything quickly.

    6. Behaviour alerts 

    While manually monitoring data is important, it’s also good to set up automatic alerts if there is unusual activity around your data centres. You should set up behaviour alerts and notifications in case threats or compromising events occur.

    7. Onboarding, training, education

    One way to ensure quality data management is to keep your employees up to speed on data security. You should ensure data security is a part of your employee onboarding. Also, you should have regular training and education to keep people informed on protecting company and customer data.

    8. Create data protocols and processes 

    To ensure long-term data security, you should establish data protocols and processes. 

    To protect your user data, set up rules and systems within your organisation that people can reference and follow continuously to prevent data misuse.

    Leverage data ethically with Matomo

    Data is everything in business.

    But it’s not something to be taken lightly. Mishandling user data can break customer trust, lead to penalties from organisations and even create legal trouble and massive fines.

    You should only use privacy-first tools to ensure you’re handling data responsibly.

    Matomo is a privacy-friendly web analytics tool that collects, stores and tracks data across your website without breaking privacy laws.

    With over 1 million websites using Matomo, you can track and improve website performance with :

    • Accurate data (no data sampling)
    • Privacy-friendly and compliant with privacy regulations like GDPR, CCPA and more
    • Advanced features like heatmaps, session recordings, A/B testing and more

    Try Matomo free for 21-days. No credit card required.