
Recherche avancée
Médias (1)
-
GetID3 - Bloc informations de fichiers
9 avril 2013, par
Mis à jour : Mai 2013
Langue : français
Type : Image
Autres articles (104)
-
Encoding and processing into web-friendly formats
13 avril 2011, parMediaSPIP automatically converts uploaded files to internet-compatible formats.
Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
All uploaded files are stored online in their original format, so you can (...) -
ANNEXE : Les plugins utilisés spécifiquement pour la ferme
5 mars 2010, parLe site central/maître de la ferme a besoin d’utiliser plusieurs plugins supplémentaires vis à vis des canaux pour son bon fonctionnement. le plugin Gestion de la mutualisation ; le plugin inscription3 pour gérer les inscriptions et les demandes de création d’instance de mutualisation dès l’inscription des utilisateurs ; le plugin verifier qui fournit une API de vérification des champs (utilisé par inscription3) ; le plugin champs extras v2 nécessité par inscription3 (...)
-
Creating farms of unique websites
13 avril 2011, parMediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...)
Sur d’autres sites (4689)
-
Revision 29744 : Update de la base de donnée
8 juillet 2009, par kent1@… — LogUpdate de la base de donnée
-
VP8 And FFmpeg
18 juin 2010, par Multimedia Mike — VP8UPDATE, 2010-06-17 : You don’t need to struggle through these instructions anymore. libvpx 0.9.1 and FFmpeg 0.6 work together much better. Please see this post for simple instructions on getting up and running quickly.
Let’s take the VP8 source code (in Google’s new libvpx library) for a spin ; get it to compile and hook it up to FFmpeg. I am hesitant to publish specific instructions for building in the somewhat hackish manner available on day 1 (download FFmpeg at a certain revision and apply a patch) since that kind of post has a tendency to rise in Google rankings. I will just need to remember to update this post after the library patches are applied to the official FFmpeg tree.
Statement of libvpx’s Relationship to FFmpeg
I don’t necessarily speak officially for FFmpeg. But I’ve been with the project long enough to explain how certain things work.Certainly, some may wonder if FFmpeg will incorporate Google’s newly open sourced libvpx library into FFmpeg. In the near term, FFmpeg will support encoding and decoding VP8 via external library as it does with a number of other libraries (most popularly, libx264). FFmpeg will not adopt the code for its own codebase, even if the license may allow it. That just isn’t how the FFmpeg crew rolls.
In the longer term, expect the FFmpeg project to develop an independent, interoperable implementation of the VP8 decoder. Sometime after that, there may also be an independent VP8 encoder as well.
Building libvpx
Download and build libvpx. This is a basic ’configure && make’ process. The build process creates a static library, a bunch of header files, and 14 utilities. A bunch of these utilities operate on a file format called IVF which is apparently a simple transport method for VP8. I have recorded the file format on the wiki.We could use a decoder for this in the FFmpeg code base for testing VP8 in the future.
Who’s game ?Just as I was proofreading this post, I saw that David Conrad has sent an IVF demuxer to the ffmpeg-devel list.There doesn’t seem to be a ’make install’ step for the library. Instead, go into the overly long directory (on my system, this is generated as vpx-vp8-nopost-nodocs-generic-gnu-v0.9.0), copy the contents of include/ to /usr/local/include and the static library in lib/ to /usr/local/lib .
Building FFmpeg with libvpx
Download FFmpeg source code at the revision specified or take your chances with the latest version (as I did). Download and apply provided patches. This part hurts since there is one diff per file. Most of them applied for me.Configure FFmpeg with
'configure --enable-libvpx_vp8 --enable-pthreads'
. Ideally, this should yield no complaints and ’libvpx_vp8’ should show up in the enabled decoders and encoders sections. The library apparently relies on threading which is why'--enable-pthreads'
is necessary. After I did this, I was able to create a new webm/VP8/Vorbis file simply with :ffmpeg -i input_file output_file.webm
Unfortunately, I can’t complete the round trip as decoding doesn’t seem to work. Passing the generated .webm file back into FFmpeg results in a bunch of errors of this format :
[libvpx_vp8 @ 0x8c4ab20]v0.9.0 [libvpx_vp8 @ 0x8c4ab20]Failed to initialize decoder : Codec does not implement requested capability
Maybe this is the FFmpeg revision mismatch biting me.
FFmpeg Presets
FFmpeg features support for preset files which contain collections of tuning options to be loaded into the program. Google provided some presets along with their FFmpeg patches :- 1080p50
- 1080p
- 360p
- 720p50
- 720p
To invoke one of these (assuming the program has been installed via ’make install’ so that the presets are in the right place) :
ffmpeg -i input_file -vcodec libvpx_vp8 -vpre 720p output_file.webm
This will use a set of parameters that are known to do well when encoding a 720p video.
Code Paths
One of goals with this post was to visualize a call graph after I got the decoder hooked up to FFmpeg. Fortunately, this recon is greatly simplified by libvpx’s simple_decoder utility. Steps :- Build libvpx with
--enable-gprof
- Run simple_decoder on an IVF file
- Get the pl_from_gprof.pl and dot_from_pl.pl scripts frome Graphviz’s gprof filters
- gprof simple_decoder | ./pl_from_gprof.pl | ./dot_from_pl.pl > 001.dot
- Remove the 2 [graph] and 1 [node] modifiers from the dot file (they only make the resulting graph very hard to read)
- dot -Tpng 001.dot > 001.png
Here are call graphs generated from decoding test vectors 001 and 017.
It’s funny to see several functions calling an empty bubble. Probably nothing to worry about. More interesting is the fact that a lot of function_c() functions are called. The ’_c’ at the end is important— that generally indicates that there are (or could be) SIMD-optimized versions. I know this codebase has plenty of assembly. All of the x86 ASM files appear to be written such that they could be compiled with NASM.
Leftovers
One interesting item in the code was vpx_scale/leapster. Is this in reference to the Leapster handheld educational gaming unit ? Based on this item from 2005 (archive.org copy), some Leapster titles probably used VP6. This reminds me of finding references to the PlayStation in Duck/On2’s original VpVision source release. I don’t know of any PlayStation games that used Duck’s original codecs but with thousands to choose from, it’s possible that we may find a few some day. -
Brute Force Dimensional Analysis
15 juillet 2010, par Multimedia Mike — Game Hacking, PythonI was poking at the data files of a really bad (is there any other kind ?) interactive movie video game known simply by one letter : D. The Sega Saturn version of the game is comprised primarily of Sega FILM/CPK files, about which I wrote the book. The second most prolific file type bears the extension ’.dg2’. Cursory examination of sample files revealed an apparently headerless format. Many of the video files are 288x144 in resolution. Multiplying that width by that height and then doubling it (as in, 2 bytes/pixel) yields 82944, which happens to be the size of a number of these DG2 files. Now, if only I had a tool that could take a suspected raw RGB file and convert it to a more standard image format.
Here’s the FFmpeg conversion recipe I used :
ffmpeg -f rawvideo -pix_fmt rgb555 -s 288x144 -i raw_file -y output.png
So that covers the files that are suspected to be 288x144 in dimension. But what about other file sizes ? My brute force approach was to try all possible dimensions that would yield a particular file size. The Python code for performing this operation is listed at the end of this post.
It’s interesting to view the progression as the script compresses to different sizes :
That ’D’ is supposed to be red. So right away, we see that rgb555(le) is not the correct input format. Annoyingly, FFmpeg cannot handle rgb555be as a raw input format. But this little project worked well enough as a proof of concept.
If you want to toy around with these files (and I know you do), I have uploaded a selection at : http://multimedia.cx/dg2/.
Here is my quick Python script for converting one of these files to every acceptable resolution.
work-out-resolution.py :
PYTHON :-
# !/usr/bin/python
-
-
import commands
-
import math
-
import os
-
import sys
-
-
FFMPEG = "/path/to/ffmpeg"
-
-
def convert_file(width, height, filename) :
-
outfile = "%s-%dx%d.png" % (filename, width, height)
-
command = "%s -f rawvideo -pix_fmt rgb555 -s %dx%d -i %s -y %s" % (FFMPEG, width, height, filename, outfile)
-
commands.getstatusoutput(command)
-
-
if len(sys.argv) <2 :
-
print "USAGE : work-out-resolution.py <file>"
-
sys.exit(1)
-
-
filename = sys.argv[1]
-
if not os.path.exists(filename) :
-
print filename + " does not exist"
-
sys.exit(1)
-
-
filesize = os.path.getsize(filename) / 2
-
-
limit = int(math.sqrt(filesize)) + 1
-
for i in xrange(1, limit) :
-
if filesize % i == 0 and filesize & 1 == 0 :
-
convert_file(i, filesize / i, filename)
-
convert_file(filesize / i, i, filename)
-