
Recherche avancée
Médias (91)
-
Corona Radiata
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Lights in the Sky
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Head Down
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Echoplex
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Discipline
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Letting You
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
Autres articles (103)
-
MediaSPIP version 0.1 Beta
16 avril 2011, parMediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...) -
MediaSPIP 0.1 Beta version
25 avril 2011, parMediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
The zip file provided here only contains the sources of MediaSPIP in its standalone version.
To get a working installation, you must manually install all-software dependencies on the server.
If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...) -
Amélioration de la version de base
13 septembre 2013Jolie sélection multiple
Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)
Sur d’autres sites (12173)
-
AVFrame : How to get/replace plane data buffer(s) and size ?
19 juillet 2018, par user10099431I’m working on gstreamer1.0-libav (1.6.3), trying to port custom FPGA based H264 video acceleration from gstreamer 0.10.
The data planes (YUV) used to be allocated by a simple malloc back in gstreamer 0.10, so we simply replaced the AVFrame.data[i] pointers by pointers to memory in our video acceleration core. It seems to be MUCH more complicated in gstreamer 1.12.
For starters, I tried copying the YUV planes from AVFrame.data[i] to a separate buffer - which worked fine ! Since I haven’t seen an immediate way to obtain the size of AVFrame.data[i] and I recognized that data[0], data[1], data[2] seem to be in a single continuous buffer, I simply used (data[1] - data [0]) for the size of the Y plane and (data[2] - data[1]) for the sizes of the U/V planes respectively. This works fine, expect for one scenario :
- Input H264 stream with resolution of 800x600 or greater
- The camera is covered (jacket, hand, ...)
This causes a SEGFAULT in the memcpy of the V plane (data[2]) using the sizes determined as described above. Before covering the camera, the stream is displayed completely fine ... so for some reason the dark screen changes the plane sizes ?
My ultimate goal is replacing the data[i] pointers allocated by gstreamer by my custom memory allocation (for futher processing) ... where exactly are these buffers assigned, can I change them and how can I obtain the size of each plane (data[0], data[1], data[2]) ?
-
Is There ANYWAY to see the x_test data and labels after the train test split functions operations
10 février 2023, par MatParI am have been searching google etc for a solution to this challenge for a few weeks now.


What is it ?
I am trying to visualise the data that is being used in the XTEST Variable via the split() function below.


Either via text/string output or the actual image that is being used therein that variable at that given time. Both would be very helpful.


For now I am using 80 videos in a Training 80 : Testing 20 split, where the validation is taking 20% of Training.


I selected various types of data for the training to see how well the model is at predicting the outcome.


So in the end I have just 16 videos for Testing for now.


WHAT I AM TRYING TO SOLVE : IS ==> what those videos are ?!!!


I have no way of knowing what selection of videos were chosen in that group of 16 for processing.


To solve this, I am trying to pass in the video label so that it can present an ID of the specific selection within the XTEST data variable.


WHY I AM DOING THIS
The model is being challenge by a selection of videos that I have no control over.
If I can identify these videos, I can analyse the data and enhance the model's performance accordingly.


The confusion matrix is doing the same, it is presenting me with just 4 misclassifications but what those 4 misclassifications are ? I have no clue.


That is not a good approach, hence me asking these questions.


** THE CODE ** where I am at


X_train, Xtest, Y_train, Ytest = train_test_split(X, Y, train_size=0.8, test_size=0.2, random_state=1, stratify=Y, shuffle=True)
#print(Xtest)

history = model.fit(X_train, Y_train, validation_split=0.20, batch_size=args.batch,epochs=args.epoch, verbose=1, callbacks=[rlronp], shuffle=True)

predict_labels = model.predict(Xtest, batch_size=args.batch,verbose=1,steps=None,callbacks=None,max_queue_size=10,workers=1,use_multiprocessing=False)
print('This is prediction labels',predict_labels)# This has no video label indentifiers 



This is working fine, but I cannot draw a hypothesis until I see what's within the Xtest variable.


All I am getting is an array of data with no labels.


For example : Xtest has 16 videos after the split operations :


is it vid04.mp4, vid34.mp4, vid21.mp4, vid34.mp4, vid74.mp4, vid54.mp4, vid71.mp4, vid40.mp4, vid06.mp4, vid27.mp4, vid32.mp4, vid18.mp4, vid66.mp4, vid42.mp4, vid8.mp4, vid14.mp4, etc ???!?!??!?!


This is what I really want to see !!!


Please assist me to understand the process and where I am going wrong..
Thanx in advance for acknowledging my challenge !


-
Extract luminance data using ffmpeg libavfilter, specifically PIX_FMT_YUV420P type
12 mars 2014, par id128This pertains to ffmpeg 0.7 (yes I know it's old, but data access should be similar).
I am writing a libavfilter to extract the luminance data from each frame. In draw_slice() function I have access to AVFilterLink structure which in turn gives me access to AVFilterBufferRef structure that have uint8_t *data[] pointers. With the PIX_FMT_YUV420P type, I think data[0], data[1], data[2] refers to Y U V channels respectively.
My question is, with the pointer to data[0] (luminance plane), how do I interpret the data ? The pixfmt.h header file states :
PIX_FMT_YUV420P, ///< planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
does that mean I have to interpret the luminance plane data every 2 bytes ? Also, what exactly is the datatype for the values pointed to by the pointer - int, float, etc ?
Thanks in advance