
Recherche avancée
Médias (1)
-
SWFUpload Process
6 septembre 2011, par
Mis à jour : Septembre 2011
Langue : français
Type : Texte
Autres articles (56)
-
Modifier la date de publication
21 juin 2013, parComment changer la date de publication d’un média ?
Il faut au préalable rajouter un champ "Date de publication" dans le masque de formulaire adéquat :
Administrer > Configuration des masques de formulaires > Sélectionner "Un média"
Dans la rubrique "Champs à ajouter, cocher "Date de publication "
Cliquer en bas de la page sur Enregistrer -
Les autorisations surchargées par les plugins
27 avril 2010, parMediaspip core
autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs -
Configuration spécifique d’Apache
4 février 2011, parModules spécifiques
Pour la configuration d’Apache, il est conseillé d’activer certains modules non spécifiques à MediaSPIP, mais permettant d’améliorer les performances : mod_deflate et mod_headers pour compresser automatiquement via Apache les pages. Cf ce tutoriel ; mode_expires pour gérer correctement l’expiration des hits. Cf ce tutoriel ;
Il est également conseillé d’ajouter la prise en charge par apache du mime-type pour les fichiers WebM comme indiqué dans ce tutoriel.
Création d’un (...)
Sur d’autres sites (6353)
-
Basic Video Palette Conversion
How do you take a 24-bit RGB image and convert it to an 8-bit paletted image for the purpose of compression using a codec that requires 8-bit input images ? Seems simple enough and that’s what I’m tackling in this post.
Ask FFmpeg/Libav To Do It
Ideally, FFmpeg / Libav should be able to handle this automatically. Indeed, FFmpeg used to be able to, at least at the time I wrote this post about ZMBV and was unhappy with FFmpeg’s default results. Somewhere along the line, FFmpeg and Libav lost the ability to do this. I suspect it got removed during some swscale refactoring.Still, there’s no telling if the old system would have computed palettes correctly for QuickTime files.
Distance Approach
When I started writing my SMC video encoder, I needed to convert RGB (from PNG files) to PAL8 colorspace. The path of least resistance was to match the pixels in the input image to the default 256-color palette that QuickTime assumes (and is hardcoded into FFmpeg/Libav).How to perform the matching ? Find the palette entry that is closest to a given input pixel, where "closest" is the minimum distance as computed by the usual distance formula (square root of the sum of the squares of the diffs of all the components).
That means for each pixel in an image, check the pixel against 256 palette entries (early termination is possible if an acceptable threshold is met). As you might imagine, this can be a bit time-consuming. I wondered about a faster approach...
Lookup Table
I think this is the approach that FFmpeg used to use, but I went and derived it for myself after studying the default QuickTime palette table. There’s a pattern there— all of the RGB entries are comprised of combinations of 6 values — 0x00, 0x33, 0x66, 0x99, 0xCC, and 0xFF. If you mix and match these for red, green, and blue values, you come up with6 * 6 * 6 = 216
different colors. This happens to be identical to the web-safe color palette.The first (0th) entry in the table is (FF, FF, FF), followed by (FF, FF, CC), (FF, FF, 99), and on down to (FF, FF, 00) when the green component gets knocked down and step and the next color is (FF, CC, FF). The first 36 palette entries in the table all have a red component of 0xFF. Thus, if an input RGB pixel has a red color closest to 0xFF, it must map to one of those first 36 entries.
I created a table which maps indices 0..215 to values from 5..0. Each of the R, G, and B components of an input pixel are used to index into this table and derive 3 indices ri, gi, and bi. Finally, the index into the palette table is given by :
index = ri * 36 + gi * 6 + bi
For example, the pixel (0xFE, 0xFE, 0x01) would yield ri, gi, and bi values of 0, 0, and 5. Therefore :
index = 0 * 36 + 0 * 6 + 5
The palette index is 5, which maps to color (0xFF, 0xFF, 0x00).
Validation
So I was pretty pleased with myself for coming up with that. Now, ideally, swapping out one algorithm for another in my SMC encoder should yield identical results. That wasn’t the case, initially.One problem is that the regulation QuickTime palette actually has 40 more entries above and beyond the typical 216-entry color cube (rounding out the grand total of 256 colors). Thus, using the distance approach with the full default table provides for a little more accuracy.
However, there still seems to be a problem. Let’s check our old standby, the Big Buck Bunny logo image :
Distance approach using the full 256-color QuickTime default palette
Distance approach using the 216-color palette
Table lookup approach using the 216-color palette
I can’t quite account for that big red splotch there. That’s the most notable difference between images 1 and 2 and the only visible difference between images 2 and 3.
To prove to myself that the distance approach is equivalent to the table approach, I wrote a Python script to iterate through all possible RGB combinations and verify the equivalence. If you’re not up on your base 2 math, that’s 224 or 16,777,216 colors to run through. I used Python’s multiprocessing module to great effect and really maximized a Core i7 CPU with 8 hardware threads.
So I’m confident that the palette conversion techniques are sound. The red spot is probably attributable to a bug in my WIP SMC encoder.
Source Code
Update August 23, 2011 : Here’s the Python code I used for proving equivalence between the 2 approaches. In terms of leveraging multiple CPUs, it’s possibly the best program I have written to date.PYTHON :-
# !/usr/bin/python
-
-
from multiprocessing import Pool
-
-
palette = []
-
pal8_table = []
-
-
def process_r(r) :
-
counts = []
-
-
for i in xrange(216) :
-
counts.append(0)
-
-
print "r = %d" % (r)
-
for g in xrange(256) :
-
for b in xrange(256) :
-
min_dsqrd = 0xFFFFFFFF
-
best_index = 0
-
for i in xrange(len(palette)) :
-
dr = palette[i][0] - r
-
dg = palette[i][1] - g
-
db = palette[i][2] - b
-
dsqrd = dr * dr + dg * dg + db * db
-
if dsqrd <min_dsqrd :
-
min_dsqrd = dsqrd
-
best_index = i
-
counts[best_index] += 1
-
-
# check if the distance approach deviates from the table-based approach
-
i = best_index
-
r = palette[i][0]
-
g = palette[i][1]
-
b = palette[i][2]
-
ri = pal8_table[r]
-
gi = pal8_table[g]
-
bi = pal8_table[b]
-
table_index = ri * 36 + gi * 6 + bi ;
-
if table_index != best_index :
-
print "(0x%02X 0x%02X 0x%02X) : distance index = %d, table index = %d" % (r, g, b, best_index, table_index)
-
-
return counts
-
-
if __name__ == ’__main__’ :
-
counts = []
-
for i in xrange(216) :
-
counts.append(0)
-
-
# initialize reference palette
-
color_steps = [ 0xFF, 0xCC, 0x99, 0x66, 0x33, 0x00 ]
-
for r in color_steps :
-
for g in color_steps :
-
for b in color_steps :
-
palette.append([r, g, b])
-
-
# initialize palette conversion table
-
for i in range(0, 26) :
-
pal8_table.append(5)
-
for i in range(26, 77) :
-
pal8_table.append(4)
-
for i in range(77, 128) :
-
pal8_table.append(3)
-
for i in range(128, 179) :
-
pal8_table.append(2)
-
for i in range(179, 230) :
-
pal8_table.append(1)
-
for i in range(230, 256) :
-
pal8_table.append(0)
-
-
# create a pool of worker threads and break up the overall job
-
pool = Pool()
-
it = pool.imap_unordered(process_r, range(256))
-
try :
-
while 1 :
-
partial_counts = it.next()
-
for i in xrange(216) :
-
counts[i] += partial_counts[i]
-
except StopIteration :
-
pass
-
-
print "index, count, red, green, blue"
-
for i in xrange(len(counts)) :
-
print "%d, %d, %d, %d, %d" % (i, counts[i], palette[i][0], palette[i][1], palette[i][2])
-
-
vsrc_movie : rename video movie specific callbacks, prefix them with "movie"
18 août 2011, par Stefano Sabatinivsrc_movie : rename video movie specific callbacks, prefix them with "movie"
-
Need encoding from images to video on Android
12 septembre 2016, par a2ronusWe need an Android app that can encode a folder of images to a video. I have been looking for solutions a while now, but cannot find anything good. The Android API does not support it. We are trying ffmpeg, but cannot get it to work. We need a working solution, using ffmpeg is not mandatory. A full Android Java solution is also a possibility, since this would work on all Android devices, possibly at the cost of some performance.
The app also needs to be able to add an audio track to the movie if the user chooses to do this.
Any help would be appreciated.
Kind regards,
Aäron