Recherche avancée

Médias (0)

Mot : - Tags -/content

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (62)

  • MediaSPIP version 0.1 Beta

    16 avril 2011, par

    MediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

  • Amélioration de la version de base

    13 septembre 2013

    Jolie sélection multiple
    Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
    Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)

Sur d’autres sites (4162)

  • Video streaming error : Uncaught (in promise) NotSupportedError : Failed to load because no supported source was found

    18 septembre 2024, par Aizen

    Here is my problem : I have one video src 1080p (on the frontend). On the frontend, I send this video-route to the backend :

    


    const req = async()=>{try{const res = await axios.get('/catalog/item',{params:{SeriesName:seriesName}});return {data:res.data};}catch(err){console.log(err);return false;}}const fetchedData = await req();-On the backend i return seriesName.Now i can make a full path,what the video is,and where it is,code:


    


    const videoUrl = 'C:/Users/arMori/Desktop/RedditClone/reddit/public/videos';console.log('IT VideoURL',videoUrl);


    


    const selectedFile = `${videoUrl}/${fetchedData.data.VideoSource}/${seriesName}-1080p.mp4`
console.log(`ITS'S SELECTED FILE: ${selectedFile}`);


    


    Ok, I have my src 1080p, now is the time to send it to the backend :

    


    const response = await axios.post('/videoFormat', {videoUrl:selectedFile})console.log('Это консоль лог путей: ',response.data);const videoPaths = response.data;


    


    Backend takes it and FFMpqg makes two types of resolution,720p and 480p,save it to the temp storage on backend, and then returns two routes where these videos stores

    


    async videoUpload(videoUrl:string){try{const tempDir = C:/Users/arMori/Desktop/RedditClone/reddit_back/src/video/temp;const inputFile = videoUrl;console.log('VIDEOURL: ',videoUrl);


    


            const outputFiles = [];&#xA;        &#xA;        await this.createDirectories(tempDir);        &#xA;        outputFiles.push(await this.convertVideo(inputFile, &#x27;1280x720&#x27;, &#x27;720p.mp4&#x27;));&#xA;        outputFiles.push(await this.convertVideo(inputFile, &#x27;854x480&#x27;, &#x27;480p.mp4&#x27;));&#xA;        console.log(&#x27;OUTUPT FILES SERVICE: &#x27;,outputFiles);&#xA;        &#xA;        return outputFiles;&#xA;&#xA;    }catch(err){&#xA;        console.error(&#x27;VideoFormatterService Error: &#x27;,err);&#xA;        &#xA;    }&#xA;}&#xA;&#xA;private convertVideo(inputPath:string,resolution:string,outputFileName:string):Promise<string>{&#xA;    const temp = `C:/Users/arMori/Desktop/RedditClone/reddit_back/src/video/temp`;&#xA;    return new Promise(async(resolve,reject)=>{&#xA;        const height = resolution.split(&#x27;x&#x27;)[1];&#xA;        console.log(&#x27;HIEGHT: &#x27;,height);&#xA;        &#xA;        const outputDir = `C:/Users/arMori/Desktop/RedditClone/reddit_back/src/video/temp/${height}p`;&#xA;        const outputPath = join(outputDir, outputFileName);&#xA;        const isExists = await fs.access(outputPath).then(() => true).catch(() => false);&#xA;        if(isExists){ &#xA;            console.log(`File already exists: ${outputPath}`);&#xA;            return resolve(outputPath)&#xA;        };&#xA;        ffmpeg(inputPath)&#xA;        .size(`${resolution}`)&#xA;        .videoCodec(&#x27;libx264&#x27;) // Кодек H.264&#xA;        .audioCodec(&#x27;aac&#x27;) &#xA;        .output(outputPath)&#xA;        .on(&#x27;end&#x27;,()=>resolve(outputPath))&#xA;        .on(&#x27;error&#x27;,(err)=>reject(err))&#xA;        .run()&#xA;            &#xA;    })&#xA;}&#xA;&#xA;private async createDirectories(temp:string){&#xA;    try{&#xA;        const dir720p = `${temp}/720p`;&#xA;        const dir480p = `${temp}/480p`;&#xA;        const dir720pExists = await fs.access(dir720p).then(() => true).catch(() => false);&#xA;        const dir480pExists = await fs.access(dir480p).then(() => true).catch(() => false);&#xA;        if(dir720pExists &amp;&amp; dir480pExists){&#xA;            console.log(&#x27;FILES ALIVE&#x27;);&#xA;            return;&#xA;        }&#xA;        if (!dir720pExists) {&#xA;            await fs.mkdir(dir720p, { recursive: true });&#xA;            console.log(&#x27;Папка 720p создана&#x27;);&#xA;        }&#xA;        &#xA;        if (!dir480pExists) {&#xA;            await fs.mkdir(dir480p, { recursive: true });&#xA;            console.log(&#x27;Папка 480p создана&#x27;);&#xA;        }&#xA;    } catch (err) {&#xA;        console.error(&#x27;Ошибка при создании директорий:&#x27;, err);&#xA;    }&#xA;}&#xA;</string>

    &#xA;

    Continue frontentd code :

    &#xA;

    let videoPath;&#xA;&#xA;if (quality === &#x27;720p&#x27;) {&#xA;        videoPath = videoPaths[0];&#xA;} else if (quality === &#x27;480p&#x27;) {&#xA;        videoPath = videoPaths[1];&#xA;}&#xA;&#xA;if (!videoPath) {&#xA;        console.error(&#x27;Video path not found!&#x27;);&#xA;        return;&#xA;}&#xA;&#xA;// Получаем видео по его пути&#xA;console.log(&#x27;VIDEOPATH LOG: &#x27;,videoPath);&#xA;    &#xA;const videoRes = await axios.get(&#x27;/videoFormat/getVideo&#x27;, { &#xA;        params: { path: videoPath } ,&#xA;        headers: { Range: &#x27;bytes=0-&#x27; },&#xA;        responseType: &#x27;blob&#x27;&#xA;    });&#xA;    console.log(&#x27;Video fetched: &#x27;, videoRes);&#xA;    const videoBlob = new Blob([videoRes.data], { type: &#x27;video/mp4&#x27; });&#xA;    const videoURL = URL.createObjectURL(videoBlob);&#xA;    return videoURL;&#xA;    /* console.log(&#x27;Видео успешно загружено:&#x27;, response.data); */&#xA;    } catch (error) {&#xA;    console.error(&#x27;Ошибка при загрузке видео:&#x27;, error);&#xA;    }&#xA;}&#xA;

    &#xA;

    Here I just choose one of the route and make a new GET request (VideoRes), now in the controller in the backend, I'm trying to do a video streaming :

    &#xA;

    @Public()&#xA;    @Get(&#x27;/getVideo&#x27;)&#xA;    async getVideo(@Query(&#x27;path&#x27;) videoPath:string,@Req() req:Request,@Res() res:Response){&#xA;        try {&#xA;            console.log(&#x27;PATH ARGUMENT: &#x27;,videoPath);&#xA;            console.log(&#x27;VIDEOPATH IN SERVICE: &#x27;,videoPath);&#xA;        const videoSize = (await fs.stat(videoPath)).size;&#xA;        const CHUNK_SIZE = 10 ** 6;&#xA;        const range = req.headers[&#x27;range&#x27;] as string | undefined;&#xA;        if (!range) {&#xA;            return new ForbiddenException(&#x27;Range не найденно&#x27;);&#xA;        }&#xA;        const start = Number(range.replace(/\D/g,""));&#xA;        const end = Math.min(start &#x2B; CHUNK_SIZE,videoSize - 1);&#xA;&#xA;        const contentLength = end - start &#x2B; 1;&#xA;        const videoStream = fsSync.createReadStream(videoPath, { start, end });&#xA;        const headers = {&#xA;            &#x27;Content-Range&#x27;:`bytes ${start}-${end}/${videoSize}`,&#xA;            &#x27;Accept-Ranges&#x27;:&#x27;bytes&#x27;,&#xA;            &#x27;Content-Length&#x27;:contentLength,&#xA;            &#x27;Content-Type&#x27;:&#x27;video/mp4&#x27;&#xA;        }&#xA;        &#xA;        res.writeHead(206,headers);&#xA;&#xA;        // Передаем поток в ответ&#xA;        videoStream.pipe(res);&#xA;        &#xA;&#xA;        // Если возникнет ошибка при стриминге, логируем ошибку&#xA;        videoStream.on(&#x27;error&#x27;, (error) => {&#xA;            console.error(&#x27;Ошибка при чтении видео:&#x27;, error);&#xA;            res.status(500).send(&#x27;Ошибка при чтении видео&#x27;);&#xA;        });&#xA;        } catch (error) {&#xA;            console.error(&#x27;Ошибка при обработке запросов:&#x27;, error);&#xA;            return res.status(400).json({ message: &#x27;Ошибка при обработке getVideo запросов&#x27; });&#xA;        }&#xA;    }&#xA;

    &#xA;

    Send to the frontend

    &#xA;

    res.writeHead(206,headers);&#xA;

    &#xA;

    In the frontend, I make blob url for video src and return it

    &#xA;

    const videoBlob = new Blob([videoRes.data], { type: &#x27;video/mp4&#x27; });const videoURL = URL.createObjectURL(videoBlob);return videoURL;&#xA;

    &#xA;

    And assign src to the video :

    &#xA;

    useVideo(seriesName,quality).then(src => {&#xA;                if (src) {&#xA;                    console.log(&#x27;ITS VIDEOLOGISC GOIDA!&#x27;);&#xA;                    if(!playRef.current) return;&#xA;                    &#xA;                    const oldURL = playRef.current.src;&#xA;                    if (oldURL &amp;&amp; oldURL.startsWith(&#x27;blob:&#x27;)) {&#xA;                        URL.revokeObjectURL(oldURL);&#xA;                    }&#xA;                    playRef.current.pause();&#xA;                    playRef.current.src = &#x27;&#x27;;&#xA;                    setQuality(quality);&#xA;                    console.log(&#x27;SRC: &#x27;,src);&#xA;                    &#xA;                    playRef.current.src = src;&#xA;                    playRef.current.load();&#xA;                    console.log(&#x27;ITS VIDEOURL GOIDA!&#x27;);&#xA;                    togglePlayPause();&#xA;                }&#xA;            })&#xA;            .catch(err => console.error(&#x27;Failed to fetch video&#x27;, err));&#xA;

    &#xA;

    But the problem is :

    &#xA;

    &#xA;

    Vinland-Saga:1 Uncaught (in promise) NotSupportedError : Failed to load because no supported source was found

    &#xA;

    &#xA;

    And I don't know why...

    &#xA;

    I tried everything, but I don't understand why src is incorrect..

    &#xA;

  • Inside WebM Technology : VP8 Intra and Inter Prediction

    20 juillet 2010, par noreply@blogger.com (Lou Quillio)
    Continuing our series on WebM technology, I will discuss the use of prediction methods in the VP8 video codec, with special attention to the TM_PRED and SPLITMV modes, which are unique to VP8.

    First, some background. To encode a video frame, block-based codecs such as VP8 first divide the frame into smaller segments called macroblocks. Within each macroblock, the encoder can predict redundant motion and color information based on previously processed blocks. The redundant data can be subtracted from the block, resulting in more efficient compression.

    Image by Fido Factor, licensed under Creative Commons Attribution License.
    Based on a work at www.flickr.com

    A VP8 encoder uses two classes of prediction :
    • Intra prediction uses data within a single video frame
    • Inter prediction uses data from previously encoded frames
    The residual signal data is then encoded using other techniques, such as transform coding.

    VP8 Intra Prediction Modes
    VP8 intra prediction modes are used with three types of macroblocks :
    • 4x4 luma
    • 16x16 luma
    • 8x8 chroma
    Four common intra prediction modes are shared by these macroblocks :
    • H_PRED (horizontal prediction). Fills each column of the block with a copy of the left column, L.
    • V_PRED (vertical prediction). Fills each row of the block with a copy of the above row, A.
    • DC_PRED (DC prediction). Fills the block with a single value using the average of the pixels in the row above A and the column to the left of L.
    • TM_PRED (TrueMotion prediction). A mode that gets its name from a compression technique developed by On2 Technologies. In addition to the row A and column L, TM_PRED uses the pixel P above and to the left of the block. Horizontal differences between pixels in A (starting from P) are propagated using the pixels from L to start each row.
    For 4x4 luma blocks, there are six additional intra modes similar to V_PRED and H_PRED, but correspond to predicting pixels in different directions. These modes are outside the scope of this post, but if you want to learn more see the VP8 Bitstream Guide.

    As mentioned above, the TM_PRED mode is unique to VP8. The following figure uses an example 4x4 block of pixels to illustrate how the TM_PRED mode works :
    Where C, As and Ls represent reconstructed pixel values from previously coded blocks, and X00 through X33 represent predicted values for the current block. TM_PRED uses the following equation to calculate Xij :

    Xij = Li + Aj - C (i, j=0, 1, 2, 3)

    Although the above example uses a 4x4 block, the TM_PRED mode for 8x8 and 16x16 blocks works in the same fashion.
    TM_PRED is one of the more frequently used intra prediction modes in VP8, and for common video sequences it is typically used by 20% to 45% of all blocks that are intra coded. Overall, together with other intra prediction modes, TM_PRED helps VP8 to achieve very good compression efficiency, especially for key frames, which can only use intra modes (key frames by their very nature cannot refer to previously encoded frames).

    VP8 Inter Prediction Modes

    In VP8, inter prediction modes are used only on inter frames (non-key frames). For any VP8 inter frame, there are typically three previously coded reference frames that can be used for prediction. A typical inter prediction block is constructed using a motion vector to copy a block from one of the three frames. The motion vector points to the location of a pixel block to be copied. In most video compression schemes, a good portion of the bits are spent on encoding motion vectors ; the portion can be especially large for video encoded at lower datarates.

    Like previous VPx codecs, VP8 encodes motion vectors very efficiently by reusing vectors from neighboring macroblocks (a macroblock includes one 16x16 luma block and two 8x8 chroma blocks). VP8 uses a similar strategy in the overall design of inter prediction modes. For example, the prediction modes "NEAREST" and "NEAR" make use of last and second-to-last, non-zero motion vectors from neighboring macroblocks. These inter prediction modes can be used in combination with any of the three different reference frames.

    In addition, VP8 has a very sophisticated, flexible inter prediction mode called SPLITMV. This mode was designed to enable flexible partitioning of a macroblock into sub-blocks to achieve better inter prediction. SPLITMV is very useful when objects within a macroblock have different motion characteristics. Within a macroblock coded using SPLITMV mode, each sub-block can have its own motion vector. Similar to the strategy of reusing motion vectors at the macroblock level, a sub-block can also use motion vectors from neighboring sub-blocks above or left to the current block. This strategy is very flexible and can effectively encode any shape of sub-macroblock partitioning, and does so efficiently. Here is an example of a macroblock with 16x16 luma pixels that is partitioned to 16 4x4 blocks :


    where New represents a 4x4 bock coded with a new motion vector, and Left and Above represent a 4x4 block coded using the motion vector from the left and above, respectively. This example effectively partitions the 16x16 macroblock into 3 different segments with 3 different motion vectors (represented below by 1, 2 and 3) :


    Through effective use of intra and inter prediction modes, WebM encoder implementations can achieve great compression quality on a wide range of source material. If you want to delve further into VP8 prediction modes, read the VP8 Bitstream Guide or examine the reconintra.c and rdopt.c files in the VP8 source tree.

    Yaowu Xu, Ph.D. is a codec engineer at Google.

  • Inside WebM Technology : VP8 Intra and Inter Prediction

    20 juillet 2010, par noreply@blogger.com (Lou Quillio)
    Continuing our series on WebM technology, I will discuss the use of prediction methods in the VP8 video codec, with special attention to the TM_PRED and SPLITMV modes, which are unique to VP8.

    First, some background. To encode a video frame, block-based codecs such as VP8 first divide the frame into smaller segments called macroblocks. Within each macroblock, the encoder can predict redundant motion and color information based on previously processed blocks. The redundant data can be subtracted from the block, resulting in more efficient compression.

    Image by Fido Factor, licensed under Creative Commons Attribution License.
    Based on a work at www.flickr.com

    A VP8 encoder uses two classes of prediction :
    • Intra prediction uses data within a single video frame
    • Inter prediction uses data from previously encoded frames
    The residual signal data is then encoded using other techniques, such as transform coding.

    VP8 Intra Prediction Modes
    VP8 intra prediction modes are used with three types of macroblocks :
    • 4x4 luma
    • 16x16 luma
    • 8x8 chroma
    Four common intra prediction modes are shared by these macroblocks :
    • H_PRED (horizontal prediction). Fills each column of the block with a copy of the left column, L.
    • V_PRED (vertical prediction). Fills each row of the block with a copy of the above row, A.
    • DC_PRED (DC prediction). Fills the block with a single value using the average of the pixels in the row above A and the column to the left of L.
    • TM_PRED (TrueMotion prediction). A mode that gets its name from a compression technique developed by On2 Technologies. In addition to the row A and column L, TM_PRED uses the pixel P above and to the left of the block. Horizontal differences between pixels in A (starting from P) are propagated using the pixels from L to start each row.
    For 4x4 luma blocks, there are six additional intra modes similar to V_PRED and H_PRED, but correspond to predicting pixels in different directions. These modes are outside the scope of this post, but if you want to learn more see the VP8 Bitstream Guide.

    As mentioned above, the TM_PRED mode is unique to VP8. The following figure uses an example 4x4 block of pixels to illustrate how the TM_PRED mode works :
    Where C, As and Ls represent reconstructed pixel values from previously coded blocks, and X00 through X33 represent predicted values for the current block. TM_PRED uses the following equation to calculate Xij :

    Xij = Li + Aj - C (i, j=0, 1, 2, 3)

    Although the above example uses a 4x4 block, the TM_PRED mode for 8x8 and 16x16 blocks works in the same fashion.
    TM_PRED is one of the more frequently used intra prediction modes in VP8, and for common video sequences it is typically used by 20% to 45% of all blocks that are intra coded. Overall, together with other intra prediction modes, TM_PRED helps VP8 to achieve very good compression efficiency, especially for key frames, which can only use intra modes (key frames by their very nature cannot refer to previously encoded frames).

    VP8 Inter Prediction Modes

    In VP8, inter prediction modes are used only on inter frames (non-key frames). For any VP8 inter frame, there are typically three previously coded reference frames that can be used for prediction. A typical inter prediction block is constructed using a motion vector to copy a block from one of the three frames. The motion vector points to the location of a pixel block to be copied. In most video compression schemes, a good portion of the bits are spent on encoding motion vectors ; the portion can be especially large for video encoded at lower datarates.

    Like previous VPx codecs, VP8 encodes motion vectors very efficiently by reusing vectors from neighboring macroblocks (a macroblock includes one 16x16 luma block and two 8x8 chroma blocks). VP8 uses a similar strategy in the overall design of inter prediction modes. For example, the prediction modes "NEAREST" and "NEAR" make use of last and second-to-last, non-zero motion vectors from neighboring macroblocks. These inter prediction modes can be used in combination with any of the three different reference frames.

    In addition, VP8 has a very sophisticated, flexible inter prediction mode called SPLITMV. This mode was designed to enable flexible partitioning of a macroblock into sub-blocks to achieve better inter prediction. SPLITMV is very useful when objects within a macroblock have different motion characteristics. Within a macroblock coded using SPLITMV mode, each sub-block can have its own motion vector. Similar to the strategy of reusing motion vectors at the macroblock level, a sub-block can also use motion vectors from neighboring sub-blocks above or left to the current block. This strategy is very flexible and can effectively encode any shape of sub-macroblock partitioning, and does so efficiently. Here is an example of a macroblock with 16x16 luma pixels that is partitioned to 16 4x4 blocks :


    where New represents a 4x4 bock coded with a new motion vector, and Left and Above represent a 4x4 block coded using the motion vector from the left and above, respectively. This example effectively partitions the 16x16 macroblock into 3 different segments with 3 different motion vectors (represented below by 1, 2 and 3) :


    Through effective use of intra and inter prediction modes, WebM encoder implementations can achieve great compression quality on a wide range of source material. If you want to delve further into VP8 prediction modes, read the VP8 Bitstream Guide or examine the reconintra.c and rdopt.c files in the VP8 source tree.

    Yaowu Xu, Ph.D. is a codec engineer at Google.