Recherche avancée

Médias (1)

Mot : - Tags -/ogv

Autres articles (59)

  • Websites made ​​with MediaSPIP

    2 mai 2011, par

    This page lists some websites based on MediaSPIP.

  • Creating farms of unique websites

    13 avril 2011, par

    MediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
    This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (9247)

  • Replace part of a video (without replacing the audio) in ffmpeg [closed]

    13 février 2021, par Real Noob

    I have a video file that is divided into three different sections. I want to replace the middle part of this video with another clip. However, I still want to keep the audio of the original video. Can I do that in ffmpeg ?

    


    Here are my requirements :

    


      

    1. Original Video is 60 seconds long.
    2. 


    3. The part I want to replace is from 25 to 45 seconds.
    4. 


    5. I want to keep the original audio from 25 to 45 seconds and just replace the visual part with some other clip.
    6. 


    7. The generated video will also be 60 seconds long. However, it will have the new video from 25 to 45 seconds.
    8. 


    


    Thanks.

    


  • why reducing the resolution a percentage doesn't reduce the video the same proportion using ffmpeg ?

    14 mars 2023, par user44551

    I'm using this command :

    


    -y -r -i $inVideoUri -movflags faststart -c:v libx265 -s $videoResolution -c:a copy -preset ultrafast $outPutUri"


    


    However, if "videoResolution" is a 50% of the original video resolution, the resulting file size is not 50% of the original one. I assume there are some headers or metadata added during the process but I would like to know how to estimate the final video size.

    


  • Tour of Part of the VP8 Process

    18 novembre 2010, par Multimedia Mike — VP8

    My toy VP8 encoder outputs a lot of textual data to illustrate exactly what it’s doing. For those who may not be exactly clear on how this or related algorithms operate, this may prove illuminating.

    Let’s look at subblock 0 of macroblock 0 of a luma plane :

     subblock 0 (original)
      92  91  89  86
      91  90  88  86
      89  89  89  88
      89  87  88  93
    

    Since it’s in the top-left corner of the image to be encoded, the phantom samples above and to the left are implicitly 128 for the purpose of intra prediction (in the VP8 algorithm).

     subblock 0 (original)
         128 128 128 128
     128  92  91  89  86
     128  91  90  88  86
     128  89  89  89  88
     128  89  87  88  93
    


    Using the 4×4 DC prediction mode means averaging the 4 top predictors and 4 left predictors. So, the predictor is 128. Subtract this from each element of the subblock :

     subblock 0, predictor removed
     -36 -37 -39 -42
     -37 -38 -40 -42
     -39 -39 -39 -40
     -39 -41 -40 -35
    

    Next, run the subblock through the forward transform :

     subblock 0, transformed
     -312   7   1   0
        1  12  -5   2
        2  -3   3  -1
        1   0  -2   1
    

    Quantize (integer divide) each element ; the DC (first element) and AC (rest of the elements) quantizers are both 4 :

     subblock 0, quantized
     -78   1   0   0
       0   3  -1   0
       0   0   0   0
       0   0   0   0
    

    The above block contains the coefficients that are actually transmitted (zigzagged and entropy-encoded) through the bitstream and decoded on the other end.

    The decoding process looks something like this– after the same coefficients are decoded and rearranged, they are dequantized (multiplied) by the original quantizers :

     subblock 0, dequantized
     -312   4   0   0
        0  12  -4   0
        0   0   0   0
        0   0   0   0
    

    Note that these coefficients are not exactly the same as the original, pre-quantized coefficients. This is a large part of where the “lossy” in “lossy video compression” comes from.

    Next, the decoder generates a base predictor subblock. In this case, it’s all 128 (DC prediction for top-left subblock) :

     subblock 0, predictor
      128 128 128 128
      128 128 128 128
      128 128 128 128
      128 128 128 128
    

    Finally, the dequantized coefficients are shoved through the inverse transform and added to the base predictor block :

     subblock 0, reconstructed
      91  91  89  85
      90  90  89  87
      89  88  89  90
      88  88  89  92
    

    Again, not exactly the same as the original block, but an incredible facsimile thereof.

    Note that this decoding-after-encoding demonstration is not merely pedagogical– the encoder has to decode the subblock because the encoding of successive subblocks may depend on this subblock. The encoder can’t rely on the original representation of the subblock because the decoder won’t have that– it will have the reconstructed block.

    For example, here’s the next subblock :

     subblock 1 (original)
      84  84  87  90
      85  85  86  93
      86  83  83  89
      91  85  84  87
    

    Let’s assume DC prediction once more. The 4 top predictors are still all 128 since this subblock lies along the top row. However, the 4 left predictors are the right edge of the subblock reconstructed in the previous example :

     subblock 1 (original)
        128 128 128 128
     85  84  84  87  90
     87  85  85  86  93
     90  86  83  83  89
     92  91  85  84  87
    

    The DC predictor is computed as (128 + 128 + 128 + 128 + 85 + 87 + 90 + 92 + 4) / 8 = 108 (the extra +4 is for rounding considerations). (Note that in this case, using the original subblock’s right edge would also have resulted in 108, but that’s beside the point.)

    Continuing through the same process as in subblock 0 :

     subblock 1, predictor removed
     -24 -24 -21 -18
     -23 -23 -22 -15
     -22 -25 -25 -19
     -17 -23 -24 -21
    

    subblock 1, transformed
    -173 -9 14 -1
    2 -11 -4 0
    1 6 -2 3
    -5 1 0 1

    subblock 1, quantized
    -43 -2 3 0
    0 -2 -1 0
    0 1 0 0
    -1 0 0 0

    subblock 1, dequantized
    -172 -8 12 0
    0 -8 -4 0
    0 4 0 0
    -4 0 0 0

    subblock 1, predictor
    108 108 108 108
    108 108 108 108
    108 108 108 108
    108 108 108 108

    subblock 1, reconstructed
    84 84 87 89
    86 85 87 91
    86 83 84 89
    90 85 84 88

    I hope this concrete example (straight from a working codec) clarifies this part of the VP8 process.