Recherche avancée

Médias (91)

Autres articles (73)

  • Personnaliser les catégories

    21 juin 2013, par

    Formulaire de création d’une catégorie
    Pour ceux qui connaissent bien SPIP, une catégorie peut être assimilée à une rubrique.
    Dans le cas d’un document de type catégorie, les champs proposés par défaut sont : Texte
    On peut modifier ce formulaire dans la partie :
    Administration > Configuration des masques de formulaire.
    Dans le cas d’un document de type média, les champs non affichés par défaut sont : Descriptif rapide
    Par ailleurs, c’est dans cette partie configuration qu’on peut indiquer le (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • Encoding and processing into web-friendly formats

    13 avril 2011, par

    MediaSPIP automatically converts uploaded files to internet-compatible formats.
    Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
    Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
    Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
    All uploaded files are stored online in their original format, so you can (...)

Sur d’autres sites (11867)

  • log : allow color highlighting in Cygwin’s mintty

    4 avril 2014, par James Darnley
    log : allow color highlighting in Cygwin’s mintty
    

    Configure will detect the availability of the Windows’ console functions and set
    HAVE_SETCONSOLETEXTATTRIBUTE. Meaning av_log will use those functions to
    control colours. When ffmpeg is run in Cygwin’s mintty terminal emulator it
    will not use colour highlighting in this case.

    Mintty responds to the usual escape code colours (it even supports 256 colours).
    Windows’ cmd.exe does not. Fortunately it seems that Cygwin’s emulation layer
    now translates the basic 16 colours into Windows’ Console command functions.

    That means that we can have av_log use the standard colour commands and let
    ffmpeg print colours in both mintty and cmd.

    Signed-off-by : Michael Niedermayer <michaelni@gmx.at>

    • [DH] libavutil/log.c
  • Why does ffmpeg burn Chinese subtitles(ass) without word wrap?

    10 mai 2023, par bjjoy

    my ffmpeg burn subtitle example

    &#xA;

    ffmpeg burn ass subtitle to mp4. The properties WrapStyle(0:word wrap, 1 : the char '\N' or movie edge force change line, 2 : only \n and \N change line).

    &#xA;

    English subtitle run OK.&#xA;Chinese subtitle has no word wrap when WrapStyle=0.

    &#xA;

  • Tour of Part of the VP8 Process

    18 novembre 2010, par Multimedia Mike — VP8

    My toy VP8 encoder outputs a lot of textual data to illustrate exactly what it’s doing. For those who may not be exactly clear on how this or related algorithms operate, this may prove illuminating.

    Let’s look at subblock 0 of macroblock 0 of a luma plane :

     subblock 0 (original)
      92  91  89  86
      91  90  88  86
      89  89  89  88
      89  87  88  93
    

    Since it’s in the top-left corner of the image to be encoded, the phantom samples above and to the left are implicitly 128 for the purpose of intra prediction (in the VP8 algorithm).

     subblock 0 (original)
         128 128 128 128
     128  92  91  89  86
     128  91  90  88  86
     128  89  89  89  88
     128  89  87  88  93
    


    Using the 4×4 DC prediction mode means averaging the 4 top predictors and 4 left predictors. So, the predictor is 128. Subtract this from each element of the subblock :

     subblock 0, predictor removed
     -36 -37 -39 -42
     -37 -38 -40 -42
     -39 -39 -39 -40
     -39 -41 -40 -35
    

    Next, run the subblock through the forward transform :

     subblock 0, transformed
     -312   7   1   0
        1  12  -5   2
        2  -3   3  -1
        1   0  -2   1
    

    Quantize (integer divide) each element ; the DC (first element) and AC (rest of the elements) quantizers are both 4 :

     subblock 0, quantized
     -78   1   0   0
       0   3  -1   0
       0   0   0   0
       0   0   0   0
    

    The above block contains the coefficients that are actually transmitted (zigzagged and entropy-encoded) through the bitstream and decoded on the other end.

    The decoding process looks something like this– after the same coefficients are decoded and rearranged, they are dequantized (multiplied) by the original quantizers :

     subblock 0, dequantized
     -312   4   0   0
        0  12  -4   0
        0   0   0   0
        0   0   0   0
    

    Note that these coefficients are not exactly the same as the original, pre-quantized coefficients. This is a large part of where the “lossy” in “lossy video compression” comes from.

    Next, the decoder generates a base predictor subblock. In this case, it’s all 128 (DC prediction for top-left subblock) :

     subblock 0, predictor
      128 128 128 128
      128 128 128 128
      128 128 128 128
      128 128 128 128
    

    Finally, the dequantized coefficients are shoved through the inverse transform and added to the base predictor block :

     subblock 0, reconstructed
      91  91  89  85
      90  90  89  87
      89  88  89  90
      88  88  89  92
    

    Again, not exactly the same as the original block, but an incredible facsimile thereof.

    Note that this decoding-after-encoding demonstration is not merely pedagogical– the encoder has to decode the subblock because the encoding of successive subblocks may depend on this subblock. The encoder can’t rely on the original representation of the subblock because the decoder won’t have that– it will have the reconstructed block.

    For example, here’s the next subblock :

     subblock 1 (original)
      84  84  87  90
      85  85  86  93
      86  83  83  89
      91  85  84  87
    

    Let’s assume DC prediction once more. The 4 top predictors are still all 128 since this subblock lies along the top row. However, the 4 left predictors are the right edge of the subblock reconstructed in the previous example :

     subblock 1 (original)
        128 128 128 128
     85  84  84  87  90
     87  85  85  86  93
     90  86  83  83  89
     92  91  85  84  87
    

    The DC predictor is computed as (128 + 128 + 128 + 128 + 85 + 87 + 90 + 92 + 4) / 8 = 108 (the extra +4 is for rounding considerations). (Note that in this case, using the original subblock’s right edge would also have resulted in 108, but that’s beside the point.)

    Continuing through the same process as in subblock 0 :

     subblock 1, predictor removed
     -24 -24 -21 -18
     -23 -23 -22 -15
     -22 -25 -25 -19
     -17 -23 -24 -21
    

    subblock 1, transformed
    -173 -9 14 -1
    2 -11 -4 0
    1 6 -2 3
    -5 1 0 1

    subblock 1, quantized
    -43 -2 3 0
    0 -2 -1 0
    0 1 0 0
    -1 0 0 0

    subblock 1, dequantized
    -172 -8 12 0
    0 -8 -4 0
    0 4 0 0
    -4 0 0 0

    subblock 1, predictor
    108 108 108 108
    108 108 108 108
    108 108 108 108
    108 108 108 108

    subblock 1, reconstructed
    84 84 87 89
    86 85 87 91
    86 83 84 89
    90 85 84 88

    I hope this concrete example (straight from a working codec) clarifies this part of the VP8 process.