
Recherche avancée
Médias (2)
-
SPIP - plugins - embed code - Exemple
2 septembre 2013, par
Mis à jour : Septembre 2013
Langue : français
Type : Image
-
Publier une image simplement
13 avril 2011, par ,
Mis à jour : Février 2012
Langue : français
Type : Video
Autres articles (52)
-
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...) -
Support audio et vidéo HTML5
10 avril 2011MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...)
Sur d’autres sites (6027)
-
FFMPEG image overlay zoompan leaving shadow
21 octobre 2018, par Pier Giorgio MisleyI have the code for adding many images overlay to a video. It works fine, but since every overlay a white shadow of the image is kept until the end of the video, like this :
As you can see, a white shadow of all images is kept in the center of the image.This is my code :
-i "input.mp4" -i "1.png" -filter_complex "[1:v]format=yuva422p,scale=7290x4850,setsar=1/1,pad=1.5*iw:1.5*ih:(ow-iw)/2:(oh-ih)/2:color=black@0,zoompan=z='min(zoom+0.0010,1.5)':s=729x485:d=400:x='iw/2-(iw/zoom/2)':y='ih/2-(ih/zoom/2)',fade=in:st=0:d=3:alpha=1,fade=out:st=13:d=3:alpha=1,setpts=PTS+22/TB[im1];[0][im1]overlay=(main_w-overlay_w)/2:(main_h - overlay_h)/2" -pix_fmt yuv420p -c:a copy "output.mp4"
(in that code I add only one image, but there might be more)
Why this white shadow is kept since the overlay to the end of the video ?
Thanks
-
Overlaying one video on another one, and making black pixels transparent
25 janvier 2023, par Michael AI'm trying to use FFMPEG to create a video with one video overlayed on top another.



I have 2 MP4s. I need to make all BLACK pixels in the overlay video transparent so that I can see the main video underneath it.



I found two ways to overlay one video on another :



First, the following positions the overlay in the center, and therefore, hides that portion of the main video beneath it :



ffmpeg -i 1.mp4 -vf "movie=2.mp4 [a]; [in][a] overlay=352:0 [b]" combined.mp4 -y




And, this one, places the overlay video on the left, but it's opacity is set to 50% so at least other one beneath it is visible :



ffmpeg -i 1.mp4 -i 2.mp4 -filter_complex "[0:v]setpts=PTS-STARTPTS[top]; [1:v]setpts=PTS-STARTPTS, format=yuva420p,colorchannelmixer=aa=0.5[bottom]; [top][bottom]overlay=shortest=0" -acodec libvo_aacenc -vcodec libx264 out.mp4 -y




My goal is simply to make all black pixels in the overlay (2.mp4) completely transparent. How can this be done.


-
Playing With Emscripten and ASM.js
1er mars 2014, par Multimedia Mike — GeneralThe last 5 years or so have provided a tremendous amount of hype about the capabilities of JavaScript. I think it really kicked off when Google announced their Chrome web browser in September, 2008 along with its V8 JS engine. This seemed to spark an arms race in JS engine performance along with much hyperbole that eventually all software could, would, and/or should be written in straight JavaScript for maximum portability and future-proofing, perhaps aided by Emscripten, a tool which magically transforms C and C++ code into JS. The latest round of rhetoric comes courtesy of something called asm.js which purports to narrow the gap between JS and native code performance.
I haven’t been a believer, to express it charitably. But I wanted to be certain, so I set out to devise my own experiment to test modern JS performance.
Up Front Summary
I was extremely surprised that my experiment demonstrated JS performance FAR beyond my expectations. There might be something to these claims of magnficent JS speed in numerical applications. Basically, here were my thoughts during the process :- There’s no way that JavaScript can come anywhere close to C performance for a numerically intensive operation ; a simple experiment should demonstrate this.
- Here’s a straightforward C program to perform a simple yet numerically intensive operation.
- Let’s compile the C program on gcc and get some baseline performance numbers.
- Let’s use Emscripten to convert the C program to JavaScript and run it under Chrome.
- Ha ! Pitiful JS performance, just as I expected !
- Try the same program under Firefox, since Firefox is supposed to have some crazy optimization for asm.js code, allegedly emitted by Emscripten.
- LOL ! Firefox performs even worse than Chrome !
- Wait a minute… the Emscripten documentation mentioned using optimization levels for generating higher performance JS, so try ‘-O1′.
- Umm… wow : Chrome’s performance increased dramatically ! What about Firefox ? Not only is Firefox faster than Chrome, it’s faster than the gcc-generated code !
- As my faith in C is suddenly shaken to its core, I remembered to compile the gcc version with an explicit optimization level. The native C version pulled ahead of Firefox again, but the Firefox code is still close.
- Aha ! This is just desktop– but what about mobile ? One of the leading arguments for converting everything to pure JavaScript is that such programs will magically run perfectly in mobile browsers. So I wager that this is where the experiment will fall over.
- I proceed to try the same converted program on a variety of mobile platforms.
- The mobile platforms perform rather admirably as well.
- I am surprised.
The Experiment
I wanted to run a simple yet numerically-intensive and relevant benchmark, and something I am familiar with. I settled on JPEG image decoding. Again, I wanted to keep this simple, ideally in a single file because I didn’t know how hard it might be to deal with Emscripten. I found NanoJPEG, which is a straightforward JPEG decoder contained in a single C file.
I altered nanojpeg.c (to a new file called nanojpeg-static.c) such that the main() program would always load a 1920×1080 (a.k.a. 1080p) JPEG file (“bbb-1080p-title.jpg”, the Big Buck Bunny title), rather than requiring a command line argument. Then I used gettimeofday() to profile the core decoding function (njDecode()).
Compiling with gcc and profiling execution :
gcc -Wall nanojpeg-static.c -o nanojpeg-static ./nanojpeg-static
Optimization levels such as -O0, -O3, or -Os can be applied to the compilation command.
For JavaScript conversion, I installed Emscripten and converted using :
/path/to/emscripten/emcc nanojpeg-static.c -o nanojpeg.html \ —preload-file bbb-1080p-title.jpg -s TOTAL_MEMORY=32000000
The ‘–preload-file’ option makes the file available to the program via standard C-style file I/O functions. The ‘-s TOTAL_MEMORY’ was necessary because the default of 16 MB wasn’t enough. Again, the -O optimization levels can be sent in.
For running, the .html file is loaded (via webserver) in a web browser.
Want To Try It Yourself ?
I put the files here : http://multimedia.cx/emscripten/. The .c file, the JPEG file, and the Emscripten-converted files using -O0, -O1, -O2, -O3, -Os, and no optimization switch.Results and Charts
Here is the spreadsheet with the raw results.I ran this experiment using Ubuntu Linux 12.04 on an Intel Atom N450-based netbook. For this part, I was able to compare the Chrome and Firefox browser results against the C results :
These are the results for a 2nd generation Android Nexus 7 using both Chrome and Firefox :
Here is the result for an iPad 2 running iOS 7 and Safari– there is no Firefox for iOS and while there is a version of Chrome for iOS, it apparently isn’t able to leverage an optimized JS engine. Chrome takes so long to complete this experiment that there’s no reason to muddy the graph with the results :
Interesting that -O1 tends to provide better optimization than levels 2 or 3, and that -Os (optimize for size) seems to be a good all-around choice.
Don’t Get Too Smug
JavaScript can indeed get amazing performance in this day and age. Please be advised, however, that this isn’t the best that a C decoder implementation can possibly do. This version doesn’t leverage any SIMD extensions. According to profiling (using gprof against the C code), sample saturation in color conversion dominates followed by inverse DCT functions, common cases for SIMD ASM or intrinsics. Allegedly, there will be some support for JS SIMD optimizations some day. We’ll see.Implications For Development
I’m still not especially motivated to try porting the entire Native Client game music player codebase to JavaScript. I’m still wondering about the recommended development flow. How are you supposed to develop for Emscripten and asm.js ? From what I can tell, Emscripten is not designed as a simple aide for porting C/C++ code to JS. No, it reduces the code into JS code you can’t possibly maintain. This seems to imply that the C/C++ code needs to be developed and debugged in its entirety and then converted to JS, which seems arduous.