Recherche avancée

Médias (0)

Mot : - Tags -/formulaire

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (28)

  • La file d’attente de SPIPmotion

    28 novembre 2010, par

    Une file d’attente stockée dans la base de donnée
    Lors de son installation, SPIPmotion crée une nouvelle table dans la base de donnée intitulée spip_spipmotion_attentes.
    Cette nouvelle table est constituée des champs suivants : id_spipmotion_attente, l’identifiant numérique unique de la tâche à traiter ; id_document, l’identifiant numérique du document original à encoder ; id_objet l’identifiant unique de l’objet auquel le document encodé devra être attaché automatiquement ; objet, le type d’objet auquel (...)

  • Submit bugs and patches

    13 avril 2011

    Unfortunately a software is never perfect.
    If you think you have found a bug, report it using our ticket system. Please to help us to fix it by providing the following information : the browser you are using, including the exact version as precise an explanation as possible of the problem if possible, the steps taken resulting in the problem a link to the site / page in question
    If you think you have solved the bug, fill in a ticket and attach to it a corrective patch.
    You may also (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (3809)

  • Google Analytics Privacy Issues : Is It Really That Bad ?

    2 juin 2022, par Erin

    If you find yourself asking : “What’s the deal with Google Analytics privacy ?”, you probably have some second thoughts. 

    Your hunch is right. Google Analytics (GA) is a popular web analytics tool, but it’s far from being perfect when it comes to respecting users’ privacy. 

    This post helps you understand tremendous Google Analytics privacy concerns users, consumers and regulators expressed over the years.

    In this blog, we’ll cover :

    What Does Google Analytics Collect About Users ? 

    To understand Google Analytics privacy issues, you need to know how Google treats web users’ data. 

    By default, Google Analytics collects the following information : 

    • Session statistics — duration, page(s) viewed, etc. 
    • Referring website details — a link you came through or keyword used. 
    • Approximate geolocation — country, city. 
    • Browser and device information — mobile vs desktop, OS usage, etc. 

    Google obtains web analytics data about users via two means : an on-site Google Analytics tracking code and cookies.

    A cookie is a unique identifier (ID) assigned to each user visiting a web property. Each cookie stores two data items : unique user ID and website name. 

    With the help of cookies, web analytics solutions can recognise returning visitors and track their actions across the website(s).

    First-party vs third-party cookies
    • First party cookies are generated by one website and collect user behaviour data from said website only. 
    • Third-party cookies are generated by a third-party website object (for example, an ad) and can track user behaviour data across multiple websites. 

    As it’s easy to imagine, third-party cookies are a goldmine for companies selling online ads. Essentially, they allow ad platforms to continue watching how the user navigates the web after clicking a certain link. 

    Yet, people have little clue as to which data they are sharing and how it is being used. Also, user consent to tracking across websites is only marginally guaranteed by existing Google Analytics controls. 

    Why Third-Party Cookie Data Collection By GA Is Problematic 

    Cookies can transmit personally identifiable information (PII) such as name, log in details, IP address, saved payment method and so on. Some of these details can end up with advertisers without consumers’ direct knowledge or consent.

    Regulatory frameworks such as General Data Protection Regulation (GDPR) in Europe and California Consumer Privacy Act (CCPA) emerged as a response to uncontrolled user behaviour tracking.

    Under regulatory pressure, Big Tech companies had to adapt their data collection process.

    Apple was the first to implement by-default third-party blocking in the Safari browser. Then added a tracking consent mechanism for iPhone users starting from iOS 15.2 and later. 

    Google, too, said it would drop third-party cookie usage after The European Commission and UK’s Competition and Markets Authority (CMA) launched antitrust investigations into its activity. 

    To shake off the data watchdogs, Google released a Privacy Sandbox — a set of progressive tech, operational and compliance changes for ensuring greater consumer privacy. 

    Google’s biggest promise : deprecate third-party cookies usage for all web and mobile products. 

    Originally, Google promised to drop third-party cookies by 2022, but that didn’t happen. Instead, Google delayed cookie tracking depreciation for Chrome until the second half of 2023

    Why did they push back on this despite hefty fines from regulators ?

    Because online ads make Google a lot of money.

    In 2021, Alphabet Inc (parent company of Google), made $256.7 billion in revenue, of which $209.49 billion came from selling advertising. 

    Lax Google Analytics privacy enforcement — and its wide usage by website owners — help Google make those billions from collecting and selling user data. 

    How Google Uses Collected Google Analytics Data for Advertising 

    Over 28 million websites (or roughly 85% of the Internet) have Google Analytics tracking codes installed. 

    Even if one day we get a Google Analytics version without cookies, it still won’t address all the privacy concerns regulators and consumers have. 

    Over the years, Google has accumulated an extensive collection of user data. The company’s engineers used it to build state-of-the-art deep learning models, now employed to build advanced user profiles. 

    Deep learning is the process of training a machine to recognise data patterns. Then this “knowledge” is used to produce highly-accurate predictive insights. The more data you have for model training — the better its future accuracy will be. 

    Google has amassed huge deposits of data from its collection of products — GA, YouTube, Gmail, Google Docs and Google Maps among others. Now they are using this data to build a third-party cookies-less alternative mechanism for modelling people’s preferences, habits, lifestyles, etc. 

    Their latest model is called Google Topics. 

    This comes only after Google’s failed attempt to replace cookie-based training with Federated Learning of Cohorts (FLoC) model. But the solution wasn’t offering enough user transparency and user controls among other issues.

    Google Topics
    Source : Google Blog

    Google Topics promises to limit the granularity of data advertisers get about users. 

    But it’s still a web user surveillance method. With Google Topics, the company will continue collecting user data via Chrome (and likely other Google products) — and share it with advertisers. 

    Because as we said before : Google is in the business of profiting off consumers’ data. 

    Two Major Ways Google Takes Advantage of Customer Data

    Every bit of data Google collects across its ecosystem of products can be used in two ways :

    • For ad targeting and personalisation 
    • To improve Google’s products 

    The latter also helps the former. 

    Advanced Ad Personalisation and Targeting

    GA provides the company with ample data on users’ 

    • Recent and frequent searches 
    • Location history
    • Visited websites
    • Used apps 
    • Videos and ads viewed 
    • Personal data like age or gender 

    The company’s privacy policy explicitly states that :

    Google Analytics Privacy Policy
    Source : Google

    Google also admits to using collected data to “measure the effectiveness of advertising” and “personalise content and ads you see on Google.” 

    But there are no further elaborations on how exactly customers’ data is used — and what you can do to prevent it from being shared with third parties. 

    In some cases, Google also “forgets” to inform users about its in-product tracking.

    Journalists from CNBC and The New York Times independently concluded that Google monitors users’ Gmail activity. In particular, the company scans your inbox for recent purchases, trips, flights and bills notifications. 

    While Google says that this information isn’t sold to advertisers (directly), they still may use the “saved information about your orders in other Google services”. 

    Once again, this means you have little control or knowledge of subsequent data usage. 

    Improving Product Usability 

    Google has many “arms” to collect different data points — from user’s search history to frequently-travelled physical routes. 

    They also reserve the right to use these insights for improving existing products. 

    Here’s what it means : by combining different types of data points obtained from various products, Google can pierce a detailed picture of a person’s life. Even if such user profile data is anonymised, it is still alarmingly accurate. 

    Douglas Schmidt, a computer science researcher at Vanderbilt University, well summarised the matter : 

    “[Google’s] business model is to collect as much data about you as possible and cross-correlate it so they can try to link your online persona with your offline persona. This tracking is just absolutely essential to their business. ‘Surveillance capitalism’ is a perfect phrase for it.”

    Google Data Collection Obsession Is Backed Into Its Business Model 

    OK, but Google offers some privacy controls to users ? Yes. Google only sees and uses the information you voluntarily enter or permit them to access. 

    But as the Washington Post correspondent points out :

    “[Big Tech] companies get to set all the rules, as long as they run those rules by consumers in convoluted terms of service that even those capable of decoding the legalistic language rarely bother to read. Other mechanisms for notice and consent, such as opt-outs and opt-ins, create similar problems. Control for the consumer is mostly an illusion.”

    Google openly claims to be “one of many ad networks that personalise ads based on your activity online”. 

    The wrinkle is that they have more data than all other advertising networks (arguably combined). This helps Google sell high-precision targeting and contextually personalised ads for billions of dollars annually.

    Given that Google has stakes in so many products — it’s really hard to de-Google your business and minimise tracking and data collection from the company.

    They are also creating a monopoly on data collection and ownership. This fact makes regulators concerned. The 2021 antitrust lawsuit from the European Commission says : 

    “The formal investigation will notably examine whether Google is distorting competition by restricting access by third parties to user data for advertising purposes on websites and apps while reserving such data for its own use.”

    In other words : By using consumer data to its unfair advantage, Google allegedly shuts off competition.

    But that’s not the only matter worrying regulators and consumers alike. Over the years, Google also received numerous other lawsuits for breaching people’s privacy, over and over again. 

    Here’s a timeline : 

    Separately, Google has a very complex history with GDPR compliance

    How Google Analytics Contributes to the Web Privacy Problem 

    Google Analytics is the key puzzle piece that supports Google’s data-driven business model. 

    If Google was to release a privacy-focused Google Analytics alternative, it’d lose access to valuable web users’ data and a big portion of digital ad revenues. 

    Remember : Google collects more data than it shares with web analytics users and advertisers. But they keep a lot of it for personal usage — and keep looking for ways to share this intel with advertisers (in a way that keeps regulators off their tail).

    For Google Analytics to become truly ethical and privacy-focused, Google would need to change their entire revenue model — which is something they are unlikely to do.

    Where does this leave Google Analytics users ? 

    In a slippery territory. By proxy, companies using GA are complicit with Google’s shady data collection and usage practice. They become part of the problem.

    In fact, Google Analytics usage opens a business to two types of risks : 

    • Reputational. 77% of global consumers say that transparency around how data is collected and used is important to them when interacting with different brands. That’s why data breaches and data misuse by brands lead to major public outrages on social media and boycotts in some cases. 
    • Legal. EU regulators are on a continuous crusade against Google Analytics 4 (GA4) as it is in breach of GDPR. French and Austrian watchdogs ruled the “service” illegal. Since Google Analytics is not GDPR compliant, it opens any business using it to lawsuits (which is already happening).

    But there’s a way out.

    Choose a Privacy-Friendly Google Analytics Alternative 

    Google Analytics is a popular web analytics service, but not the only one available. You have alternatives such as Matomo. 

    Our guiding principle is : respecting privacy.

    Unlike Google Analytics, we leave data ownership 100% in users’ hands. Matomo lets you implement privacy-centred controls for user data collection.

    Plus, you can self-host Matomo On-Premise or choose Matomo Cloud with data securely stored in the EU and in compliance with GDPR.

    The best part ? You can try our ethical alternative to Google Analytics for free. No credit card required ! Start your free 21-day trial now

  • Matomo Celebrates 15 Years of Building an Open-Source & Transparent Web Analytics Solution

    30 juin 2022, par Matthieu Aubry — About, Community
    &lt;script type=&quot;text/javascript&quot;&gt;<br />
           if ('function' === typeof window.playMatomoVideo){<br />
           window.playMatomoVideo(&quot;brand&quot;, &quot;#brand&quot;)<br />
           } else {<br />
           document.addEventListener(&quot;DOMContentLoaded&quot;, function() { window.playMatomoVideo(&quot;brand&quot;, &quot;#brand&quot;); });<br />
           }<br />
      &lt;/script&gt;

    Fifteen years ago, I realised that people (myself included) were increasingly integrating the internet into their everyday lives, and it was clear that it would only expand in the future. It was an exciting new world, but the amount of personal data shared online, level of tracking and lack of security was a growing concern. Google Analytics was just launched then and was already gaining huge traction – so data from millions of websites started flowing into Google’s database, creating what was then the biggest centralised database about people worldwide and their actions online.

    So as a young engineering student, I decided we needed to build an open source and transparent solution that could help make the internet more secure and private while still providing organisations with powerful insights. I aimed to create a win-win solution for businesses and their digital consumers.

    And in 2007, I started developing Matomo with the help from Scott Switzer and Jennifer Langdon (who offered me an internship and support).   

    All thanks to the Matomo Community

    We have reached significant milestones and made major changes over the last 15 years, but we wouldn’t be where we are today without the Matomo Community.

    So I would like to celebrate and thank the hundreds of volunteer developers who have donated their time to develop Matomo, the thousands of contributors who provided feedback to improve Matomo, the countless supportive forum members, our passionate team of 40 at Matomo, the numerous translators who have translated Matomo and the 1.5 million websites that choose Matomo as their analytics platform.

    Matomo's Birthday
    Team Meetup in Paris in 2012

    Matomo has been a community effort built on the shoulders of many, and we will continue to work for you. 

    So let’s look at some milestones we have achieved over the last 15 years.

    Looking back on milestones in our timeline

    2007

    • Birth of Matomo
    • First alpha version released

    2008

    • Release first public 0.1.0 version

    2009

    • 50,000 websites use Matomo

    2010

    • Matomo first stable 1.0.0 released
    • Mobile app launched

    2011

    • Released Ecommerce Analytics, Custom Variables, First Party Cookies

    • Released Privacy control features (first of many privacy features to come !)

    2012

    • Released Log Analytics feature
    • 1 Million Downloads !
    • 300,000 websites worldwide use Matomo

    2013

    • Matomo is now available in 50 languages !
    • Matomo brand redesign

    2016

    2017

    • Launched Matomo Cloud service 
    • Released Multi Channel Conversion Attribution Premium Feature, Custom Reports Premium Feature, Login Saml Premium Feature, WooCommerceAnalytics Premium Feature and Heatmap & Session Recording Premium Feature 

    2018

    2019

    2020

    2021

    • 1,000,000 websites worldwide use Matomo
    • including 30,000 active Matomo for WordPress installations
    • Released SEO Web Vitals, Advertising Conversion Export and Tracking Spam Prevention feature

    2022

    • Released WP Statistics to Matomo importer

    Our efforts continue

    While we’ve seen incredible growth over the years, our work doesn’t stop there. In fact, we’re only just getting started.

    Today over 55% of the internet continues to use privacy-threatening web analytics solutions, while 1.5% uses Matomo. So there are still great strides to be made to create a more private internet, and joining the Matomo Community is one way to support this movement.

    There are many ways to get involved too, such as :

    So what comes next for Matomo ?

    The future of Matomo is approachable, powerful and flexible. We’re strengthening the customers’ voice, expanding our resources internally (we’re continuously hiring !) and conducting rigorous customer research to craft a tool that balances usability and functionality.

    I look forward to the next 15 years and seeing what the future holds for Matomo and our community.

  • Announcing our latest open source project : DeviceDetector

    30 juillet 2014, par Stefan Giehl — Community, Development, Meta, DeviceDetector

    This blog post is an announcement for our latest open source project release : DeviceDetector ! The Universal Device Detection library will parse any User Agent and detect the browser, operating system, device used (desktop, tablet, mobile, tv, cars, console, etc.), brand and model.

    Read on to learn more about this exciting release.

    Why did we create DeviceDetector ?

    Our previous library UserAgentParser only had the possibility to detect operating systems and browsers. But as more and more traffic is coming from mobile devices like smartphones and tablets it is getting more and more important to know which devices are used by the websites visitors.

    To ensure that the device detection within Piwik will gain the required attention, so it will be as accurate as possible, we decided to move that part of Piwik into a separate project, that we will maintain separately. As an own project we hope the DeviceDetector will gain a better visibility as well as a better support by and for the community !

    DeviceDetector is hosted on GitHub at piwik/device-detector. It is also available as composer package through Packagist.

    How DeviceDetector works

    Every client requesting data from a webserver identifies itself by sending a so-called User-Agent within the request to the server. Those User Agents might contain several information such as :

    • client name and version (clients can be browsers or other software like feed readers, media players, apps,…)
    • operating system name and version
    • device identifier, which can be used to detect the brand and model.

    For Example :

    Mozilla/5.0 (Linux; Android 4.4.2; Nexus 5 Build/KOT49H) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.99 Mobile Safari/537.36

    This User Agent contains following information :

    Operating system is Android 4.4.2, client uses the browser Chrome Mobile 32.0.1700.99 and the device is a Google Nexus 5 smartphone.

    What DeviceDetector currently detects

    DeviceDetector is able to detect bots, like search engines, feed fetchers, site monitors and so on, five different client types, including around 100 browsers, 15 feed readers, some media players, personal information managers (like mail clients) and mobile apps using the AFNetworking framework, around 80 operating systems and nine different device types (smartphones, tablets, feature phones, consoles, tvs, car browsers, cameras, smart displays and desktop devices) from over 180 brands.

    Note : Piwik itself currently does not use the full feature set of DeviceDetector. Client detection is currently not implemented in Piwik (only detected browsers are reported, other clients are marked as Unknown). Client detection will be implemented into Piwik in the future, follow #5413 to stay updated.

    Performance of DeviceDetector

    Our detections are currently handled by an enormous number of regexes, that are defined in several .YML Files. As parsing these .YML files is a bit slow, DeviceDetector is able to cache the parsed .YML Files. By default DeviceDetector uses a static cache, which means that everything is cached in static variables. As that only improves speed for many detections within one process, there are also adapters to cache in files or memcache for speeding up detections across requests.

    How can users help contribute to DeviceDetector ?

    Submit your devices that are not detected yet

    If you own a device, that is currently not correctly detected by the DeviceDetector, please create a issue on GitHub
    In order to check if your device is detected correctly by the DeviceDetector go to your Piwik server, click on ‘Settings’ link, then click on ‘Device Detection’ under the Diagnostic menu. If the data does not match, please copy the displayed User Agent and use that and your device data to create a ticket.

    Submit a list of your User Agents

    In order to create new detections or improve the existing ones, it is necessary for us to have lists of User Agents. If you have a website used by mostly non desktop devices it would be useful if you send a list of the User Agents that visited your website. To do so you need access to your access logs. The following command will extract the User Agents :

    zcat ~/path/to/access/logs* | awk -F'"' '{print $6}' | sort | uniq -c | sort -rn | head -n20000 &gt; /home/piwik/top-user-agents.txt

    If you want to help us with those data, please get in touch at devicedetector@piwik.org

    Submit improvements on GitHub

    As DeviceDetector is free/libre library, we invite you to help us improving the detections as well as the code. Please feel free to create tickets and pull requests on Github.

    What’s the next big thing for DeviceDetector ?

    Please check out the list of issues in device-detector issue tracker.

    We hope the community will answer our call for help. Together, we can build DeviceDetector as the most powerful device detection library !

    Happy Device Detection,