Recherche avancée

Médias (1)

Mot : - Tags -/belgique

Autres articles (35)

  • Les formats acceptés

    28 janvier 2010, par

    Les commandes suivantes permettent d’avoir des informations sur les formats et codecs gérés par l’installation local de ffmpeg :
    ffmpeg -codecs ffmpeg -formats
    Les format videos acceptés en entrée
    Cette liste est non exhaustive, elle met en exergue les principaux formats utilisés : h264 : H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 m4v : raw MPEG-4 video format flv : Flash Video (FLV) / Sorenson Spark / Sorenson H.263 Theora wmv :
    Les formats vidéos de sortie possibles
    Dans un premier temps on (...)

  • Soumettre améliorations et plugins supplémentaires

    10 avril 2011

    Si vous avez développé une nouvelle extension permettant d’ajouter une ou plusieurs fonctionnalités utiles à MediaSPIP, faites le nous savoir et son intégration dans la distribution officielle sera envisagée.
    Vous pouvez utiliser la liste de discussion de développement afin de le faire savoir ou demander de l’aide quant à la réalisation de ce plugin. MediaSPIP étant basé sur SPIP, il est également possible d’utiliser le liste de discussion SPIP-zone de SPIP pour (...)

  • Ajouter notes et légendes aux images

    7 février 2011, par

    Pour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
    Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
    Modification lors de l’ajout d’un média
    Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...)

Sur d’autres sites (5501)

  • Cannot convert from mts (AVCHD) to mkv using ffmpeg

    10 août 2016, par waran

    I was trying to convert a .MTS file from my camcorder (Panasonic HC-V700) to a .mkv file (because my editing software does not support MTS). I used the following command :

    ffmpeg -i 00000.MTS -scodec copy -acodec copy -vcodec copy -f matroska 00000.mkv

    But instead of getting a mkv file I get this :

    ffmpeg version 2.8.6-1ubuntu2 Copyright (c) 2000-2016 the FFmpeg developers
     built with gcc 5.3.1 (Ubuntu 5.3.1-11ubuntu1) 20160311
     configuration: --prefix=/usr --extra-version=1ubuntu2 --build-suffix=-ffmpeg --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --cc=cc --cxx=g++ --enable-gpl --enable-shared --disable-stripping --disable-decoder=libopenjpeg --disable-decoder=libschroedinger --enable-avresample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libmodplug --enable-libmp3lame --enable-libopenjpeg --enable-libopus --enable-libpulse --enable-librtmp --enable-libschroedinger --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxvid --enable-libzvbi --enable-openal --enable-opengl --enable-x11grab --enable-libdc1394 --enable-libiec61883 --enable-libzmq --enable-frei0r --enable-libx264 --enable-libopencv
     WARNING: library configuration mismatch
     avcodec     configuration: --prefix=/usr --extra-version=1ubuntu2 --build-suffix=-ffmpeg --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --cc=cc --cxx=g++ --enable-gpl --enable-shared --disable-stripping --disable-decoder=libopenjpeg --disable-decoder=libschroedinger --enable-avresample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libmodplug --enable-libmp3lame --enable-libopenjpeg --enable-libopus --enable-libpulse --enable-librtmp --enable-libschroedinger --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxvid --enable-libzvbi --enable-openal --enable-opengl --enable-x11grab --enable-libdc1394 --enable-libiec61883 --enable-libzmq --enable-frei0r --enable-libx264 --enable-libopencv --enable-version3 --disable-doc --disable-programs --disable-avdevice --disable-avfilter --disable-avformat --disable-avresample --disable-postproc --disable-swscale --enable-libopencore_amrnb --enable-libopencore_amrwb --enable-libvo_aacenc --enable-libvo_amrwbenc
     libavutil      54. 31.100 / 54. 31.100
     libavcodec     56. 60.100 / 56. 60.100
     libavformat    56. 40.101 / 56. 40.101
     libavdevice    56.  4.100 / 56.  4.100
     libavfilter     5. 40.101 /  5. 40.101
     libavresample   2.  1.  0 /  2.  1.  0
     libswscale      3.  1.101 /  3.  1.101
     libswresample   1.  2.101 /  1.  2.101
     libpostproc    53.  3.100 / 53.  3.100
    Input #0, mpegts, from '00000.MTS':
     Duration: 00:00:07.68, start: 2.306356, bitrate: 12032 kb/s
     Program 1
       Stream #0:0[0x1011]: Video: h264 (High) (HDMV / 0x564D4448), yuv420p, 1920x1080 [SAR 1:1 DAR 16:9], 25 fps, 25 tbr, 90k tbn, 50 tbc
       Stream #0:1[0x1100]: Audio: ac3 (AC-3 / 0x332D4341), 48000 Hz, stereo, fltp, 256 kb/s
       Stream #0:2[0x1200]: Subtitle: hdmv_pgs_subtitle ([144][0][0][0] / 0x0090), 1920x1080
    [matroska @ 0x6ce920] Codec for stream 0 does not use global headers but container format requires global headers
    [matroska @ 0x6ce920] Codec for stream 1 does not use global headers but container format requires global headers
    [matroska @ 0x6ce920] Codec for stream 2 does not use global headers but container format requires global headers
    Output #0, matroska, to '00000.mkv':
     Metadata:
       encoder         : Lavf56.40.101
       Stream #0:0: Video: h264 (H264 / 0x34363248), yuv420p, 1920x1080 [SAR 1:1 DAR 16:9], q=2-31, 25 fps, 25 tbr, 1k tbn, 90k tbc
       Stream #0:1: Audio: ac3 ([0] [0][0] / 0x2000), 48000 Hz, stereo, 256 kb/s
       Stream #0:2: Subtitle: hdmv_pgs_subtitle ([255][255][255][255] / 0xFFFFFFFF), 1920x1080
    Stream mapping:
     Stream #0:0 -> #0:0 (copy)
     Stream #0:1 -> #0:1 (copy)
     Stream #0:2 -> #0:2 (copy)
    Press [q] to stop, [?] for help
    [matroska @ 0x6ce920] failed to avoid negative pts -65 in stream 2.
    Try -avoid_negative_ts 1 as a possible workaround.
       Last message repeated 1 times
    [matroska @ 0x6ce920] failed to avoid negative pts -63 in stream 2.
    Try -avoid_negative_ts 1 as a possible workaround.
    [matroska @ 0x6ce920] Can't write packet with unknown timestamp
    av_interleaved_write_frame(): Invalid argument
    [matroska @ 0x6ce920] Can't write packet with unknown timestamp
    frame=   23 fps=0.0 q=-1.0 Lsize=     187kB time=00:00:00.41 bitrate=3705.7kbits/s    
    video:707kB audio:7kB subtitle:3kB other streams:0kB global headers:0kB muxing overhead: unknown
    Conversion failed!

    Any ideas why is it not working ? (I am on Kubuntu 16.04 and I have ffmpeg version 2.8.6-1ubuntu2.)

    (I’m sorry for my English.)

    Edit :

    I tried the command without the subtitle stream (ffmpeg -i 00000.MTS -c copy -sn 00000.mkv), conversion failed again :

    ffmpeg version 2.8.6-1ubuntu2 Copyright (c) 2000-2016 the FFmpeg developers
     built with gcc 5.3.1 (Ubuntu 5.3.1-11ubuntu1) 20160311
     configuration: --prefix=/usr --extra-version=1ubuntu2 --build-suffix=-ffmpeg --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --cc=cc --cxx=g++ --enable-gpl --enable-shared --disable-stripping --disable-decoder=libopenjpeg --disable-decoder=libschroedinger --enable-avresample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libmodplug --enable-libmp3lame --enable-libopenjpeg --enable-libopus --enable-libpulse --enable-librtmp --enable-libschroedinger --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxvid --enable-libzvbi --enable-openal --enable-opengl --enable-x11grab --enable-libdc1394 --enable-libiec61883 --enable-libzmq --enable-frei0r --enable-libx264 --enable-libopencv
     WARNING: library configuration mismatch
     avcodec     configuration: --prefix=/usr --extra-version=1ubuntu2 --build-suffix=-ffmpeg --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --cc=cc --cxx=g++ --enable-gpl --enable-shared --disable-stripping --disable-decoder=libopenjpeg --disable-decoder=libschroedinger --enable-avresample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libmodplug --enable-libmp3lame --enable-libopenjpeg --enable-libopus --enable-libpulse --enable-librtmp --enable-libschroedinger --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxvid --enable-libzvbi --enable-openal --enable-opengl --enable-x11grab --enable-libdc1394 --enable-libiec61883 --enable-libzmq --enable-frei0r --enable-libx264 --enable-libopencv --enable-version3 --disable-doc --disable-programs --disable-avdevice --disable-avfilter --disable-avformat --disable-avresample --disable-postproc --disable-swscale --enable-libopencore_amrnb --enable-libopencore_amrwb --enable-libvo_aacenc --enable-libvo_amrwbenc
     libavutil      54. 31.100 / 54. 31.100
     libavcodec     56. 60.100 / 56. 60.100
     libavformat    56. 40.101 / 56. 40.101
     libavdevice    56.  4.100 / 56.  4.100
     libavfilter     5. 40.101 /  5. 40.101
     libavresample   2.  1.  0 /  2.  1.  0
     libswscale      3.  1.101 /  3.  1.101
     libswresample   1.  2.101 /  1.  2.101
     libpostproc    53.  3.100 / 53.  3.100
    Input #0, mpegts, from '00000.MTS':
     Duration: 00:00:07.68, start: 2.306356, bitrate: 12032 kb/s
     Program 1
       Stream #0:0[0x1011]: Video: h264 (High) (HDMV / 0x564D4448), yuv420p, 1920x1080 [SAR 1:1 DAR 16:9], 25 fps, 25 tbr, 90k tbn, 50 tbc
       Stream #0:1[0x1100]: Audio: ac3 (AC-3 / 0x332D4341), 48000 Hz, stereo, fltp, 256 kb/s
       Stream #0:2[0x1200]: Subtitle: hdmv_pgs_subtitle ([144][0][0][0] / 0x0090), 1920x1080
    [matroska @ 0x1b3a900] Codec for stream 0 does not use global headers but container format requires global headers
    [matroska @ 0x1b3a900] Codec for stream 1 does not use global headers but container format requires global headers
    Output #0, matroska, to '00000.mkv':
     Metadata:
       encoder         : Lavf56.40.101
       Stream #0:0: Video: h264 (H264 / 0x34363248), yuv420p, 1920x1080 [SAR 1:1 DAR 16:9], q=2-31, 25 fps, 25 tbr, 1k tbn, 90k tbc
       Stream #0:1: Audio: ac3 ([0] [0][0] / 0x2000), 48000 Hz, stereo, 256 kb/s
    Stream mapping:
     Stream #0:0 -> #0:0 (copy)
     Stream #0:1 -> #0:1 (copy)
    Press [q] to stop, [?] for help
    [matroska @ 0x1b3a900] Can't write packet with unknown timestamp
    av_interleaved_write_frame(): Invalid argument
    [matroska @ 0x1b3a900] Can't write packet with unknown timestamp
    frame=   17 fps=0.0 q=-1.0 Lsize=     184kB time=00:00:00.28 bitrate=5386.9kbits/s    
    video:554kB audio:1kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: unknown
    Conversion failed!

    Edit : Temporary solution

    I have found out, that converting to mp4 (fmpeg -i 00000.MTS -c copy -sn 00000.mp4) works. This does not solve the issue, but I can use the mp4 format in my editing software as well.

  • H.264 and VP8 for still image coding : WebP ?

    http://x264.nl/developers/Dark_Shikari/imagecoding/output.ogv
    1er octobre 2010, par Dark Shikari — google, H.264, psychovisual optimizations, VP8

    Update : post now contains a Theora comparison as well ; see below.

    JPEG is a very old lossy image format. By today’s standards, it’s awful compression-wise : practically every video format since the days of MPEG-2 has been able to tie or beat JPEG at its own game. The reasons people haven’t switched to something more modern practically always boil down to a simple one — it’s just not worth the hassle. Even if JPEG can be beaten by a factor of 2, convincing the entire world to change image formats after 20 years is nigh impossible. Furthermore, JPEG is fast, simple, and practically guaranteed to be free of any intellectual property worries. It’s been tried before : JPEG-2000 first, then Microsoft’s JPEG XR, both tried to unseat JPEG. Neither got much of anywhere.

    Now Google is trying to dump yet another image format on us, “WebP”. But really, it’s just a VP8 intra frame. There are some obvious practical problems with this new image format in comparison to JPEG ; it doesn’t even support all of JPEG’s features, let alone many of the much-wanted features JPEG was missing (alpha channel support, lossless support). It only supports 4:2:0 chroma subsampling, while JPEG can handle 4:2:2 and 4:4:4. Google doesn’t seem interested in adding any of these features either.

    But let’s get to the meat and see how these encoders stack up on compressing still images. As I explained in my original analysis, VP8 has the advantage of H.264′s intra prediction, which is one of the primary reasons why H.264 has such an advantage in intra compression. It only has i4x4 and i16x16 modes, not i8x8, so it’s not quite as fancy as H.264′s, but it comes close.

    The test files are all around 155KB ; download them for the exact filesizes. For all three, I did a binary search of quality levels to get the file sizes close. For x264, I encoded with --tune stillimage --preset placebo. For libvpx, I encoded with --best. For JPEG, I encoded with ffmpeg, then applied jpgcrush, a lossless jpeg compressor. I suspect there are better JPEG encoders out there than ffmpeg ; if you have one, feel free to test it and post the results. The source image is the 200th frame of Parkjoy, from derf’s page (fun fact : this video was shot here ! More info on the video here.).

    Files : (x264 [154KB], vp8 [155KB], jpg [156KB])

    Results (decoded to PNG) : (x264, vp8, jpg)

    This seems rather embarrassing for libvpx. Personally I think VP8 looks by far the worst of the bunch, despite JPEG’s blocking. What’s going on here ? VP8 certainly has better entropy coding than JPEG does (by far !). It has better intra prediction (JPEG has just DC prediction). How could VP8 look worse ? Let’s investigate.

    VP8 uses a 4×4 transform, which tends to blur and lose more detail than JPEG’s 8×8 transform. But that alone certainly isn’t enough to create such a dramatic difference. Let’s investigate a hypothesis — that the problem is that libvpx is optimizing for PSNR and ignoring psychovisual considerations when encoding the image… I’ll encode with --tune psnr --preset placebo in x264, turning off all psy optimizations. 

    Files : (x264, optimized for PSNR [154KB]) [Note for the technical people : because adaptive quantization is off, to get the filesize on target I had to use a CQM here.]

    Results (decoded to PNG) : (x264, optimized for PSNR)

    What a blur ! Only somewhat better than VP8, and still worse than JPEG. And that’s using the same encoder and the same level of analysis — the only thing done differently is dropping the psy optimizations. Thus we come back to the conclusion I’ve made over and over on this blog — the encoder matters more than the video format, and good psy optimizations are more important than anything else for compression. libvpx, a much more powerful encoder than ffmpeg’s jpeg encoder, loses because it tries too hard to optimize for PSNR.

    These results raise an obvious question — is Google nuts ? I could understand the push for “WebP” if it was better than JPEG. And sure, technically as a file format it is, and an encoder could be made for it that’s better than JPEG. But note the word “could”. Why announce it now when libvpx is still such an awful encoder ? You’d have to be nuts to try to replace JPEG with this blurry mess as-is. Now, I don’t expect libvpx to be able to compete with x264, the best encoder in the world — but surely it should be able to beat an image format released in 1992 ?

    Earth to Google : make the encoder good first, then promote it as better than the alternatives. The reverse doesn’t work quite as well.

    Addendum (added Oct. 2, 03:51) :

    maikmerten gave me a Theora-encoded image to compare as well. Here’s the PNG and the source (155KB). And yes, that’s Theora 1.2 (Ptalarbvorm) beating VP8 handily. Now that is embarassing. Guess what the main new feature of Ptalarbvorm is ? Psy optimizations…

    Addendum (added Apr. 20, 23:33) :

    There’s a new webp encoder out, written from scratch by skal (available in libwebp). It’s significantly better than libvpx — not like that says much — but it should probably beat JPEG much more readily now. The encoder design is rather unique — it basically uses K-means for a large part of the encoding process. It still loses to x264, but that was expected.

    [155KB]
  • Playing With Emscripten and ASM.js

    1er mars 2014, par Multimedia Mike — General

    The last 5 years or so have provided a tremendous amount of hype about the capabilities of JavaScript. I think it really kicked off when Google announced their Chrome web browser in September, 2008 along with its V8 JS engine. This seemed to spark an arms race in JS engine performance along with much hyperbole that eventually all software could, would, and/or should be written in straight JavaScript for maximum portability and future-proofing, perhaps aided by Emscripten, a tool which magically transforms C and C++ code into JS. The latest round of rhetoric comes courtesy of something called asm.js which purports to narrow the gap between JS and native code performance.

    I haven’t been a believer, to express it charitably. But I wanted to be certain, so I set out to devise my own experiment to test modern JS performance.

    Up Front Summary
    I was extremely surprised that my experiment demonstrated JS performance FAR beyond my expectations. There might be something to these claims of magnficent JS speed in numerical applications. Basically, here were my thoughts during the process :

    • There’s no way that JavaScript can come anywhere close to C performance for a numerically intensive operation ; a simple experiment should demonstrate this.
    • Here’s a straightforward C program to perform a simple yet numerically intensive operation.
    • Let’s compile the C program on gcc and get some baseline performance numbers.
    • Let’s use Emscripten to convert the C program to JavaScript and run it under Chrome.
    • Ha ! Pitiful JS performance, just as I expected !
    • Try the same program under Firefox, since Firefox is supposed to have some crazy optimization for asm.js code, allegedly emitted by Emscripten.
    • LOL ! Firefox performs even worse than Chrome !
    • Wait a minute… the Emscripten documentation mentioned using optimization levels for generating higher performance JS, so try ‘-O1′.
    • Umm… wow : Chrome’s performance increased dramatically ! What about Firefox ? Not only is Firefox faster than Chrome, it’s faster than the gcc-generated code !
    • As my faith in C is suddenly shaken to its core, I remembered to compile the gcc version with an explicit optimization level. The native C version pulled ahead of Firefox again, but the Firefox code is still close.
    • Aha ! This is just desktop– but what about mobile ? One of the leading arguments for converting everything to pure JavaScript is that such programs will magically run perfectly in mobile browsers. So I wager that this is where the experiment will fall over.
    • I proceed to try the same converted program on a variety of mobile platforms.
    • The mobile platforms perform rather admirably as well.
    • I am surprised.

    The Experiment
    I wanted to run a simple yet numerically-intensive and relevant benchmark, and something I am familiar with. I settled on JPEG image decoding. Again, I wanted to keep this simple, ideally in a single file because I didn’t know how hard it might be to deal with Emscripten. I found NanoJPEG, which is a straightforward JPEG decoder contained in a single C file.

    I altered nanojpeg.c (to a new file called nanojpeg-static.c) such that the main() program would always load a 1920×1080 (a.k.a. 1080p) JPEG file (“bbb-1080p-title.jpg”, the Big Buck Bunny title), rather than requiring a command line argument. Then I used gettimeofday() to profile the core decoding function (njDecode()).

    Compiling with gcc and profiling execution :

    gcc -Wall nanojpeg-static.c -o nanojpeg-static
    ./nanojpeg-static
    

    Optimization levels such as -O0, -O3, or -Os can be applied to the compilation command.

    For JavaScript conversion, I installed Emscripten and converted using :

    /path/to/emscripten/emcc nanojpeg-static.c -o nanojpeg.html \
      —preload-file bbb-1080p-title.jpg -s TOTAL_MEMORY=32000000
    

    The ‘–preload-file’ option makes the file available to the program via standard C-style file I/O functions. The ‘-s TOTAL_MEMORY’ was necessary because the default of 16 MB wasn’t enough. Again, the -O optimization levels can be sent in.

    For running, the .html file is loaded (via webserver) in a web browser.

    Want To Try It Yourself ?
    I put the files here : http://multimedia.cx/emscripten/. The .c file, the JPEG file, and the Emscripten-converted files using -O0, -O1, -O2, -O3, -Os, and no optimization switch.

    Results and Charts
    Here is the spreadsheet with the raw results.

    I ran this experiment using Ubuntu Linux 12.04 on an Intel Atom N450-based netbook. For this part, I was able to compare the Chrome and Firefox browser results against the C results :



    These are the results for a 2nd generation Android Nexus 7 using both Chrome and Firefox :



    Here is the result for an iPad 2 running iOS 7 and Safari– there is no Firefox for iOS and while there is a version of Chrome for iOS, it apparently isn’t able to leverage an optimized JS engine. Chrome takes so long to complete this experiment that there’s no reason to muddy the graph with the results :



    Interesting that -O1 tends to provide better optimization than levels 2 or 3, and that -Os (optimize for size) seems to be a good all-around choice.

    Don’t Get Too Smug
    JavaScript can indeed get amazing performance in this day and age. Please be advised, however, that this isn’t the best that a C decoder implementation can possibly do. This version doesn’t leverage any SIMD extensions. According to profiling (using gprof against the C code), sample saturation in color conversion dominates followed by inverse DCT functions, common cases for SIMD ASM or intrinsics. Allegedly, there will be some support for JS SIMD optimizations some day. We’ll see.

    Implications For Development
    I’m still not especially motivated to try porting the entire Native Client game music player codebase to JavaScript. I’m still wondering about the recommended development flow. How are you supposed to develop for Emscripten and asm.js ? From what I can tell, Emscripten is not designed as a simple aide for porting C/C++ code to JS. No, it reduces the code into JS code you can’t possibly maintain. This seems to imply that the C/C++ code needs to be developed and debugged in its entirety and then converted to JS, which seems arduous.