
Recherche avancée
Autres articles (101)
-
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...) -
Contribute to translation
13 avril 2011You can help us to improve the language used in the software interface to make MediaSPIP more accessible and user-friendly. You can also translate the interface into any language that allows it to spread to new linguistic communities.
To do this, we use the translation interface of SPIP where the all the language modules of MediaSPIP are available. Just subscribe to the mailing list and request further informantion on translation.
MediaSPIP is currently available in French and English (...) -
Prérequis à l’installation
31 janvier 2010, parPréambule
Cet article n’a pas pour but de détailler les installations de ces logiciels mais plutôt de donner des informations sur leur configuration spécifique.
Avant toute chose SPIPMotion tout comme MediaSPIP est fait pour tourner sur des distributions Linux de type Debian ou dérivées (Ubuntu...). Les documentations de ce site se réfèrent donc à ces distributions. Il est également possible de l’utiliser sur d’autres distributions Linux mais aucune garantie de bon fonctionnement n’est possible.
Il (...)
Sur d’autres sites (6660)
-
Opencv is working for my project on my laptop but stop working on raspberry pi
10 mars 2021, par Clovis TiwangeGood morning all ! I despair (This is my first post).
I am trying to set up a human detection system using the openvino toolkit. I am using an example project provided by openvino at the following openvino multi target tracking. I first tested them on my computer (ubuntu) and it worked. I have now tried to run the project on raspberry pi but it gets stuck at opencv level. I followed the following tutorial Install openvino on rasbian for setting up openvino.
While debugging, I realized that the problem was with cv2.videocapure (link). Apparently there is a problem with the backend ffmepg but also GStreamer.


I run the following command


python3 multi_camera_multi_target_tracking.py -i http://192.168.137.160:4747/video --m_detector model/intel/person-detection-retail-0013/FP32/person-detection-retail-0013.xml --m_reid model/intel/person-reidentification-retail-0031/FP32/person-reidentification-retail-0031.xml --config config.py -l /opt/intel/openvino/deployment_tools/inference_engine/lib/intel64/libcpu_extension_avx2.so



And i have the following results


INFO: 2021-03-07 21:07:34: Opening file http://192.168.137.160:4747/video
[DEBUG:0] global ../opencv/modules/videoio/src/videoio_registry.cpp (171) VideoBackendRegistry VIDEOIO: Builtin backends(8): FFMPEG(1000); GSTREAMER(990); INTEL_MFX(980); MSMF(970); V4L2(960); CV_IMAGES(950); CV_MJPEG(940); UEYE(930)

[DEBUG:0] global ../opencv/modules/videoio/src/videoio_registry.cpp (195) VideoBackendRegistry VIDEOIO: Available backends(8): FFMPEG(1000); GSTREAMER(990); INTEL_MFX(980); MSMF(970); V4L2(960); CV_IMAGES(950); CV_MJPEG(940); UEYE(930)

[ INFO:0] global ../opencv/modules/videoio/src/videoio_registry.cpp (197) VideoBackendRegistry VIDEOIO: Enabled backends(8, sorted by priority): FFMPEG(1000); GSTREAMER(990); INTEL_MFX(980); MSMF(970); V4L2(960); CV_IMAGES(950); CV_MJPEG(940); UEYE(930)

[ WARN:0] global ../opencv/modules/videoio/src/cap.cpp (108) open VIDEOIO(FFMPEG): trying capture filename='http://192.168.137.160:4747/video' ...

[ INFO:0] global ../opencv/modules/videoio/src/backend_plugin.cpp (359) getPluginCandidates VideoIO pluigin (FFMPEG): glob is 'libopencv_videoio_ffmpeg*.so', 1 location(s)

[ INFO:0] global ../opencv/modules/videoio/src/backend_plugin.cpp (366) getPluginCandidates - /opt/intel/openvino/opencv/lib: 1

[ INFO:0] global ../opencv/modules/videoio/src/backend_plugin.cpp (370) getPluginCandidates Found 1 plugin(s) for FFMPEG

[ INFO:0] global ../opencv/modules/videoio/src/backend_plugin.cpp (175) libraryLoad load /opt/intel/openvino/opencv/lib/libopencv_videoio_ffmpeg.so => FAILED

[ WARN:0] global ../opencv/modules/videoio/src/cap.cpp (170) open VIDEOIO(FFMPEG): backend is not available (plugin is missing, or can't be loaded due dependencies or it is not compatible)

[ WARN:0] global ../opencv/modules/videoio/src/cap.cpp (108) open VIDEOIO(GSTREAMER): trying capture filename='http://192.168.137.160:4747/video' ...

[ INFO:0] global ../opencv/modules/videoio/src/backend_plugin.cpp (359) getPluginCandidates VideoIO pluigin (GSTREAMER): glob is 'libopencv_videoio_gstreamer*.so', 1 location(s)

[ INFO:0] global ../opencv/modules/videoio/src/backend_plugin.cpp (366) getPluginCandidates - /opt/intel/openvino/opencv/lib: 1

[ INFO:0] global ../opencv/modules/videoio/src/backend_plugin.cpp (370) getPluginCandidates Found 1 plugin(s) for GSTREAMER

[ INFO:0] global ../opencv/modules/videoio/src/backend_plugin.cpp (175) libraryLoad load /opt/intel/openvino/opencv/lib/libopencv_videoio_gstreamer.so => OK

[ INFO:0] global ../opencv/modules/videoio/src/backend_plugin.cpp (236) PluginBackend Video I/O: loaded plugin 'GStreamer OpenCV Video I/O plugin'

[ INFO:0] global ../opencv/modules/videoio/src/cap_gstreamer.cpp (711) open OpenCV | GStreamer: http://192.168.137.160:4747/video

[ INFO:0] global ../opencv/modules/videoio/src/cap_gstreamer.cpp (744) open OpenCV | GStreamer: mode - URI



The program seems to be stuck there. No exception is thrown.


-
lavfi/dnn_classify : add filter dnn_classify for classification based on detection...
17 mars 2021, par Guo, Yejunlavfi/dnn_classify : add filter dnn_classify for classification based on detection bounding boxes
classification is done on every detection bounding box in frame's side data,
which are the results of object detection (filter dnn_detect).Please refer to commit log of dnn_detect for the material for detection,
and see below for classification.download material for classifcation :
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.bin
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.xml
wget https://github.com/guoyejun/ffmpeg_dnn/raw/main/models/openvino/2021.1/emotions-recognition-retail-0003.labelrun command as :
./ffmpeg -i cici.jpg -vf dnn_detect=dnn_backend=openvino:model=face-detection-adas-0001.xml:input=data:output=detection_out:confidence=0.6:labels=face-detection-adas-0001.label,dnn_classify=dnn_backend=openvino:model=emotions-recognition-retail-0003.xml:input=data:output=prob_emotion:confidence=0.3:labels=emotions-recognition-retail-0003.label:target=face,showinfo -f null -We'll see the detect&classify result as below :
[Parsed_showinfo_2 @ 0x55b7d25e77c0] side data - detection bounding boxes :
[Parsed_showinfo_2 @ 0x55b7d25e77c0] source : face-detection-adas-0001.xml, emotions-recognition-retail-0003.xml
[Parsed_showinfo_2 @ 0x55b7d25e77c0] index : 0, region : (1005, 813) -> (1086, 905), label : face, confidence : 10000/10000.
[Parsed_showinfo_2 @ 0x55b7d25e77c0] classify : label : happy, confidence : 6757/10000.
[Parsed_showinfo_2 @ 0x55b7d25e77c0] index : 1, region : (888, 839) -> (967, 926), label : face, confidence : 6917/10000.
[Parsed_showinfo_2 @ 0x55b7d25e77c0] classify : label : anger, confidence : 4320/10000.Signed-off-by : Guo, Yejun <yejun.guo@intel.com>
-
How to resample from 8K to 16K with librosa or torchaudio as ffmpeg do it ?
28 décembre 2023, par user3668129In my app,


- 

-
I'm getting array of audio sample (with sample rate =8000) which was loaded with
torchaudio.load


-
I need to use this audio array and run whisper (STT).


-
I want to avoid from loading the wav file again with whisper (load_audio) (for efficiency) and to resample the array to 16000.


-
whisper.load_audio
useffmpeg
to load and resample the audio to 16000.
I'm trying to uselibrosa
ortorchaudio
and resample the audio array but It always seems that the resample methods are not the same.

-
(I assume that if I use other resample method not as the whisper model was trained on, I can get bad results).














Example :
loading test.wav file (with SR=8000) and print the 5 first cells :

whisper_audio = whisper.load_audio(file)
=>[-0.00082397 -0.00115967 -0.00186157 -0.00231934 -0.00222778, ...]


loading with
torchaudio
and resample it withlibrosa
:
librosa.resample(vad_audio, orig_sr=8000, target_sr=16000, scale=True, res_type='kaiser_best')

=>[-0.00082317 -0.0010577 -0.0013937 -0.0016688 -0.00186235


seems different values.


How can I resample the audio in the exact way
ffmpeg
do it ?

-