
Recherche avancée
Médias (1)
-
Somos millones 1
21 juillet 2014, par
Mis à jour : Juin 2015
Langue : français
Type : Video
Autres articles (56)
-
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir -
Librairies et binaires spécifiques au traitement vidéo et sonore
31 janvier 2010, parLes logiciels et librairies suivantes sont utilisées par SPIPmotion d’une manière ou d’une autre.
Binaires obligatoires FFMpeg : encodeur principal, permet de transcoder presque tous les types de fichiers vidéo et sonores dans les formats lisibles sur Internet. CF ce tutoriel pour son installation ; Oggz-tools : outils d’inspection de fichiers ogg ; Mediainfo : récupération d’informations depuis la plupart des formats vidéos et sonores ;
Binaires complémentaires et facultatifs flvtool2 : (...) -
Support audio et vidéo HTML5
10 avril 2011MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...)
Sur d’autres sites (7813)
-
Computer crashing when using python tools in same script
5 février 2023, par SL1997I am attempting to use the speech recognition toolkit VOSK and the speech diarization package Resemblyzer to transcibe audio and then identify the speakers in the audio.


Tools :


https://github.com/alphacep/vosk-api

https://github.com/resemble-ai/Resemblyzer

I can do both things individually but run into issues when trying to do them when running the one python script.


I used the following guide when setting up the diarization system :




Computer specs are as follows :


Intel(R) Core(TM) i3-7100 CPU @ 3.90GHz, 3912 Mhz, 2 Core(s), 4 Logical Processor(s)

32GB RAM

The following is my code, I am not to sure if using threading is appropriate or if I even implemented it correctly, how can I best optimize this code as to achieve the results I am looking for and not crash.


from vosk import Model, KaldiRecognizer
from pydub import AudioSegment
import json
import sys
import os
import subprocess
import datetime
from resemblyzer import preprocess_wav, VoiceEncoder
from pathlib import Path
from resemblyzer.hparams import sampling_rate
from spectralcluster import SpectralClusterer
import threading
import queue
import gc



def recognition(queue, audio, FRAME_RATE):

 model = Model("Vosk_Models/vosk-model-small-en-us-0.15")

 rec = KaldiRecognizer(model, FRAME_RATE)
 rec.SetWords(True)

 rec.AcceptWaveform(audio.raw_data)
 result = rec.Result()

 transcript = json.loads(result)#["text"]

 #return transcript
 queue.put(transcript)



def diarization(queue, audio):

 wav = preprocess_wav(audio)
 encoder = VoiceEncoder("cpu")
 _, cont_embeds, wav_splits = encoder.embed_utterance(wav, return_partials=True, rate=16)
 print(cont_embeds.shape)

 clusterer = SpectralClusterer(
 min_clusters=2,
 max_clusters=100,
 p_percentile=0.90,
 gaussian_blur_sigma=1)

 labels = clusterer.predict(cont_embeds)

 def create_labelling(labels, wav_splits):

 times = [((s.start + s.stop) / 2) / sampling_rate for s in wav_splits]
 labelling = []
 start_time = 0

 for i, time in enumerate(times):
 if i > 0 and labels[i] != labels[i - 1]:
 temp = [str(labels[i - 1]), start_time, time]
 labelling.append(tuple(temp))
 start_time = time
 if i == len(times) - 1:
 temp = [str(labels[i]), start_time, time]
 labelling.append(tuple(temp))

 return labelling

 #return
 labelling = create_labelling(labels, wav_splits)
 queue.put(labelling)



def identify_speaker(queue1, queue2):

 transcript = queue1.get()
 labelling = queue2.get()

 for speaker in labelling:

 speakerID = speaker[0]
 speakerStart = speaker[1]
 speakerEnd = speaker[2]

 result = transcript['result']
 words = [r['word'] for r in result if speakerStart < r['start'] < speakerEnd]
 #return
 print("Speaker",speakerID,":",' '.join(words), "\n")





def main():

 queue1 = queue.Queue()
 queue2 = queue.Queue()

 FRAME_RATE = 16000
 CHANNELS = 1

 podcast = AudioSegment.from_mp3("Podcast_Audio/Film-Release-Clip.mp3")
 podcast = podcast.set_channels(CHANNELS)
 podcast = podcast.set_frame_rate(FRAME_RATE)

 first_thread = threading.Thread(target=recognition, args=(queue1, podcast, FRAME_RATE))
 second_thread = threading.Thread(target=diarization, args=(queue2, podcast))
 third_thread = threading.Thread(target=identify_speaker, args=(queue1, queue2))

 first_thread.start()
 first_thread.join()
 gc.collect()

 second_thread.start()
 second_thread.join()
 gc.collect()

 third_thread.start()
 third_thread.join()
 gc.collect()

 # transcript = recognition(podcast,FRAME_RATE)
 #
 # labelling = diarization(podcast)
 #
 # print(identify_speaker(transcript, labelling))


if __name__ == '__main__':
 main()



When I say crash I mean everything freezes, I have to hold down the power button on the desktop and turn it back on again. No blue/blank screen, just frozen in my IDE looking at my code. Any help in resolving this issue would be greatly appreciated.


-
How to sell Piwik services without any confusion ?
10 octobre 2017, par InnoCraft — PluginsAs you may know, Piwik is a Free software under the GPL license which guarantees you :
- The freedom to run the program for any purpose.
- The freedom to study how it works and change it.
- The freedom to improve the program, and release your changes.
- The freedom to redistribute it under the GPL license, and to sell it if you wish.
In this article we will focus on the Free aspect of Piwik, which is how to rebrand Piwik, how to offer your clients a better experience, and possibly how to make a profit from it ?
How to sell Piwik services as an agency ?
As a web analytics software, Piwik is often installed by web agencies when it comes to designing a brand new website for a given customer.
Most of the time agencies are using Piwik for the following reasons :- free of charge
- data ownership
- user privacy compliance
- feature rich while easy to use
- open source
Most of the agencies are charging their customers for the installation process, tracking code implementation, analysing reports to get insights about users… but do you know that you could also sell the software as your own brand ? This is where the “White Label” plugin, developed by the InnoCraft company, comes into play.
White labelling for Piwik
Creating a “white label” plugin came into the mind of InnoCraft founders when they realized that on any modern Piwik installation, the following components were visible :
- Piwik branded widgets within the dashboards
- Piwik marketplace plugin teasers on the admin page
- Piwik help and support pages
- the “Piwik” word in general
- Piwik Mobile app banners
Example of Piwik branded widgets
In order to remove all those mentions of Piwik and to start selling this web analytics under your own name, you can either hack Piwik on your own (it is going to take you some precious time and money) or have a look at the White Label plugin on the marketplace where InnoCraft has solved all the challenges already for you.
The White Label plugin is straightforward. Once downloaded and installed, you will have access to a dedicated interface where you will be able to change the Piwik name by a new custom brand of your choice :
Piwik White Label settings
Once you click Save, all “Piwik” mentions will be substituted by your company name/service :
Here the Piwik version is changed by the name of the company
How to make your installation even more customized ?
Few Piwik users know about this trick, but since 2014 the Piwik templates can be customized through Themes. You are free to design your own template, installing existing ones, or even monetize them through the marketplace :
A simple example of how Piwik can be easily customized, here fonts and colours are changed
If you want to know how you can tweak your existing template and make it match your brand and image, just follow our theme documentation. A simple theme with your colors can be built in a few minutes simply by defining different color codes. You can also browse the public themes on the Marketplace.
Tell us your story
If you are an agency or any business related in selling Piwik services, we recommend having a look at our FAQ for rebranding, selling, reusing, re-licensing, and including Piwik in my offering. Are you interested or already re-selling Piwik services ? We would love to hear your story and write a blog post about it.
Do not hesitate to contact the Piwik core team, we’re looking forward to hearing from you.
-
How to compress webcam videos recorded by html5 MediaRecorder api ?
25 mai 2017, par JasonYI successfully recorded my webcam using MediaRecorder api and the resulting filesizes seemed far too big for their quality.
For example, for an 8 second video that was 480x640 I got a 1mB file size. That does not seem right.
My code to record()
navigator.mediaDevices.getUserMedia({video: true, audio: true})
.then(function(stream){
var options = {
mimeType : "video/webm;codecs=vp9"
//I don't set bitrate here even if I do the quality is too bad
}
var media_recorder = new MediaRecorder(media_stream, options);
var recorded_data = [];
media_recorder.ondataavailable = function(e){
recorded_data.push(e.data);
}
media_recorder.onstop = function(e){
recorded_data.push(e.data);
var recorded_blob = new Blob(recorded_data, { 'type' : 'video/webm; codecs=vp9' });
var recorded_video_url = window.URL.createObjectURL(recorded_blob);
//here I write some code to download the blob from this url through a href
}
})The file obtained by this method is unreasonably large which makes me wonder if it was even compressed when encoded by VP9 ? A 7 second video is about 870kB !
Inspecting the file with a mediainfo tool gives me
General
Count : 323
Count of stream of this kind : 1
Kind of stream : General
Kind of stream : General
Stream identifier : 0
Count of video streams : 1
Count of audio streams : 1
Video_Format_List : VP9
Video_Format_WithHint_List : VP9
Codecs Video : V_VP9
Video_Language_List : English
Audio_Format_List : Opus
Audio_Format_WithHint_List : Opus
Audio codecs : Opus
Audio_Language_List : English
Complete name : recorded_video.webm
File name : recorded_video
File extension : webm
Format : WebM
Format : WebM
Format/Url : http://www.webmproject.org/
Format/Extensions usually used : webm
Commercial name : WebM
Format version : Version 2
Internet media type : video/webm
Codec : WebM
Codec : WebM
Codec/Url : http://www.webmproject.org/
Codec/Extensions usually used : webm
File size : 867870
File size : 848 KiB
File size : 848 KiB
File size : 848 KiB
File size : 848 KiB
File size : 847.5 KiB
File last modification date : UTC 2017-05-19 05:48:00
File last modification date (local) : 2017-05-19 17:48:00
Writing application : Chrome
Writing application : Chrome
Writing library : Chrome
Writing library : Chrome
IsTruncated : Yes
Video
Count : 332
Count of stream of this kind : 1
Kind of stream : Video
Kind of stream : Video
Stream identifier : 0
StreamOrder : 1
ID : 2
ID : 2
Unique ID : 62101435245162993
Format : VP9
Commercial name : VP9
Codec ID : V_VP9
Codec ID/Url : http://www.webmproject.org/
Codec : V_VP9
Codec : V_VP9
Width : 640
Width : 640 pixels
Height : 480
Height : 480 pixels
Pixel aspect ratio : 1.000
Display aspect ratio : 1.333
Display aspect ratio : 4:3
Frame rate mode : VFR
Frame rate mode : Variable
Language : en
Language : English
Language : English
Language : en
Language : eng
Language : en
Default : Yes
Default : Yes
Forced : No
Forced : No
Audio
Count : 272
Count of stream of this kind : 1
Kind of stream : Audio
Kind of stream : Audio
Stream identifier : 0
StreamOrder : 0
ID : 1
ID : 1
Unique ID : 32224324715799545
Format : Opus
Format/Url : http://opus-codec.org/
Commercial name : Opus
Internet media type : audio/opus
Codec ID : A_OPUS
Codec ID/Url : http://opus-codec.org
Codec : Opus
Codec : Opus
Codec/Family : PCM
Channel(s) : 1
Channel(s) : 1 channel
Channel positions : Front: C
Channel positions : 1/0/0
Sampling rate : 48000
Sampling rate : 48.0 KHz
Compression mode : Lossy
Compression mode : Lossy
Delay : 718
Delay : 718ms
Delay : 718ms
Delay : 718ms
Delay : 00:00:00.718
Delay, origin : Container
Delay, origin : Container
Language : en
Language : English
Language : English
Language : en
Language : eng
Language : en
Default : Yes
Default : Yes
Forced : No
Forced : NoWhat did I do wrong ? Do I have to re-encode it after the chunks get appended ? Is there some attribute I’m missing ? VP9 is supposed to reduce file sizes drastically.