
Recherche avancée
Médias (16)
-
#7 Ambience
16 octobre 2011, par
Mis à jour : Juin 2015
Langue : English
Type : Audio
-
#6 Teaser Music
16 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#5 End Title
16 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#3 The Safest Place
16 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#4 Emo Creates
15 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
-
#2 Typewriter Dance
15 octobre 2011, par
Mis à jour : Février 2013
Langue : English
Type : Audio
Autres articles (35)
-
Mise à jour de la version 0.1 vers 0.2
24 juin 2013, parExplications des différents changements notables lors du passage de la version 0.1 de MediaSPIP à la version 0.3. Quelles sont les nouveautés
Au niveau des dépendances logicielles Utilisation des dernières versions de FFMpeg (>= v1.2.1) ; Installation des dépendances pour Smush ; Installation de MediaInfo et FFprobe pour la récupération des métadonnées ; On n’utilise plus ffmpeg2theora ; On n’installe plus flvtool2 au profit de flvtool++ ; On n’installe plus ffmpeg-php qui n’est plus maintenu au (...) -
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
-
Ecrire une actualité
21 juin 2013, parPrésentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
Vous pouvez personnaliser le formulaire de création d’une actualité.
Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...)
Sur d’autres sites (4845)
-
The 11th Hour RoQ Variation
12 avril 2012, par Multimedia Mike — Game Hacking, dreamroq, Reverse Engineering, roq, Vector QuantizationI have been looking at the RoQ file format almost as long as I have been doing practical multimedia hacking. However, I have never figured out how the RoQ format works on The 11th Hour, which was the game for which the RoQ format was initially developed. When I procured the game years ago, I remember finding what appeared to be RoQ files and shoving them through the open source decoders but not getting the right images out.
I decided to dust off that old copy of The 11th Hour and have another go at it.
Baseline
The game consists of 4 CD-ROMs. Each disc has a media/ directory that has a series of files bearing the extension .gjd, likely the initials of one Graeme J. Devine. These are resource files which are merely headerless concatenations of other files. Thus, at first glance, one file might appear to be a single RoQ file. So that’s the source of some of the difficulty : Sending an apparent RoQ .gjd file through a RoQ player will often cause the program to complain when it encounters the header of another RoQ file.I have uploaded some samples to the usual place.
However, even the frames that a player can decode (before encountering a file boundary within the resource file) look wrong.
Investigating Codebooks Using dreamroq
I wrote dreamroq last year– an independent RoQ playback library targeted towards embedded systems. I aimed it at a gjd file and quickly hit a codebook error.RoQ is a vector quantizer video codec that maintains a codebook of 256 2×2 pixel vectors. In the Quake III and later RoQ files, these are transported using a YUV 4:2:0 colorspace– 4 Y samples, a U sample, and a V sample to represent 4 pixels. This totals 6 bytes per vector. A RoQ codebook chunk contains a field that indicates the number of 2×2 vectors as well as the number of 4×4 vectors. The latter vectors are each comprised of 4 2×2 vectors.
Thus, the total size of a codebook chunk ought to be (# of 2×2 vectors) * 6 + (# of 4×4 vectors) * 4.
However, this is not the case with The 11th Hour RoQ files.
Longer Codebooks And Mystery Colorspace
Juggling the numbers for a few of the codebook chunks, I empirically determined that the 2×2 vectors are represented by 10 bytes instead of 6. Now I need to determine what exactly these 10 bytes represent.I should note that I suspect that everything else about these files lines up with successive generations of the format. For example if a file has 640×320 resolution, that amounts to 40×20 macroblocks. dreamroq iterates through 40×20 8×8 blocks and precisely exhausts the VQ bitstream. So that all looks valid. I’m just puzzled on the codebook format.
Here is an example codebook dump :
ID 0x1002, len = 0x0000014C, args = 0x1C0D 0 : 00 00 00 00 00 00 00 00 80 80 1 : 08 07 00 00 1F 5B 00 00 7E 81 2 : 00 00 15 0F 00 00 40 3B 7F 84 3 : 00 00 00 00 3A 5F 18 13 7E 84 4 : 00 00 00 00 3B 63 1B 17 7E 85 5 : 18 13 00 00 3C 63 00 00 7E 88 6 : 00 00 00 00 00 00 59 3B 7F 81 7 : 00 00 56 23 00 00 61 2B 80 80 8 : 00 00 2F 13 00 00 79 63 81 83 9 : 00 00 00 00 5E 3F AC 9B 7E 81 10 : 1B 17 00 00 B6 EF 77 AB 7E 85 11 : 2E 43 00 00 C1 F7 75 AF 7D 88 12 : 6A AB 28 5F B6 B3 8C B3 80 8A 13 : 86 BF 0A 03 D5 FF 3A 5F 7C 8C 14 : 00 00 9E 6B AB 97 F5 EF 7F 80 15 : 86 73 C8 CB B6 B7 B7 B7 85 8B 16 : 31 17 84 6B E7 EF FF FF 7E 81 17 : 79 AF 3B 5F FC FF E2 FF 7D 87 18 : DC FF AE EF B3 B3 B8 B3 85 8B 19 : EF FF F5 FF BA B7 B6 B7 88 8B 20 : F8 FF F7 FF B3 B7 B7 B7 88 8B 21 : FB FF FB FF B8 B3 B4 B3 85 88 22 : F7 FF F7 FF B7 B7 B9 B7 87 8B 23 : FD FF FE FF B9 B7 BB B7 85 8A 24 : E4 FF B7 EF FF FF FF FF 7F 83 25 : FF FF AC EB FF FF FC FF 7F 83 26 : CC C7 F7 FF FF FF FF FF 7F 81 27 : FF FF FE FF FF FF FF FF 80 80
Note that 0x14C (the chunk size) = 332, 0x1C and 0x0D (the chunk arguments — count of 2×2 and 4×4 vectors, respectively) are 28 and 13. 28 * 10 + 13 * 4 = 332, so the numbers check out.
Do you see any patterns in the codebook ? Here are some things I tried :
- Treating the last 2 bytes as U & V and treating the first 4 as the 4 Y samples :
- Treating the last 2 bytes as U & V and treating the first 8 as 4 16-bit little-endian Y samples :
- Disregarding the final 2 bytes and treating the first 8 bytes as 4 RGB565 pixels (both little- and big-endian, respectively, shown here) :
- Based on the type of data I’m seeing in these movies (which appears to be intended as overlays), I figured that some of these bits might indicate transparency ; here is 15-bit big-endian RGB which disregards the top bit of each pixel :
These images are taken from the uploaded sample bdpuz.gjd, apparently a component of the puzzle represented in this screenshot.
Unseen Types
It has long been rumored that early RoQ files could contain JPEG images. I finally found one such specimen. One of the files bundled early in the uploaded fhpuz.gjd sample contains a JPEG frame. It’s a standard JFIF file and can easily be decoded after separating the bytes from the resource using ‘dd’. JPEGs serve as intraframes in the coding scheme, with successive RoQ frames moving objects on top.However, a new chunk type showed up as well, one identified by 0×1030. I have never encountered this type. Where could I possibly find data about this ? Fortunately, iD Games recently posted all of their open sourced games at Github. Reading through the code for their official RoQ decoder, I see that this is called a RoQ_PACKET. The name and the code behind it are both supremely unhelpful. The code is basically a no-op. The payloads of the various RoQ_PACKETs from one sample are observed to be either 8784, 14752, or 14760 bytes in length. It’s very likely that this serves the same purpose as the JPEG intraframes.
Other Tidbits
I read through the readme.txt on the first game disc and found this nugget :g) Animations displayed normally or in SPOOKY MODE
SPOOKY MODE is blue-tinted grayscale with color cursors, puzzle
and game pieces. It is the preferred display setting of the
developers at Trilobyte. Just for fun, try out the SPOOKY
MODE.The MobyGames screenshot page has a number of screenshots labeled as being captured in spooky mode. Color tricks ?
Meanwhile, another twist arose as I kept tweaking dreamroq to deal with more RoQ weirdness : After modifying my dreamroq code to handle these 10-byte vectors, it eventually chokes on another codebook. These codebooks happen to have 6-byte vectors again ! Fortunately, I was already working on a scheme to automatically detect which codebook is in play (plugging the numbers into a formula and seeing which vector size checks out).
- Treating the last 2 bytes as U & V and treating the first 4 as the 4 Y samples :
-
Why Matomo is a serious alternative to Google Analytics 360
12 décembre 2018, par Jake Thornton — Marketing -
How to convert same audio twice using libswresamples's swr_convert
25 juillet 2019, par JoshuaCWebDeveloperI’m working on an audio processing system that sometimes requires that the same audio be resampled twice. The first resampling of the audio from FFmpeg works fine, the second results in distorted audio. I’ve reproduced this problem by modifying the
resampling_audio
example provided by FFmpeg. How do I convert the same audio twice usingswr_convert
?Below I’ve attached a modified version of the
resampling_audio
example. In order to reproduce the issue, follow these steps :- Clone FFmepg project at https://github.com/FFmpeg/FFmpeg
- Run
./configure
- Run
make -j4 examples
(this will take awhile the first time) - Run
doc/examples/resampling_audio
to produce expected output - Replace
doc/examples/resampling_audio.c
with the version I’ve attached below - Run
make -j4 examples
- Run
doc/examples/resampling_audio
again (with new args) to output two new files (one for each conversion). - Import each file into Audacity as raw data, the first file should be 44100 Hz, the second should be 32000 Hz.
- The first file will sound the same as the original, the second file will be distorted.
The environment I ran this in was Ubuntu 16.04 ; I then copied the output files to a Windows PC to open them in Audacity.
Here is my modified
resampling_audio.c
file. I’ve created some new variables and copied the blocks of code that do the conversion. The first conversion should be unchanged, the second conversion takes in data from the first conversion and attempts to convert it again./*
* Copyright (c) 2012 Stefano Sabatini
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/**
* @example resampling_audio.c
* libswresample API use example.
*/
#include <libavutil></libavutil>opt.h>
#include <libavutil></libavutil>channel_layout.h>
#include <libavutil></libavutil>samplefmt.h>
#include <libswresample></libswresample>swresample.h>
static int get_format_from_sample_fmt(const char **fmt,
enum AVSampleFormat sample_fmt)
{
int i;
struct sample_fmt_entry {
enum AVSampleFormat sample_fmt; const char *fmt_be, *fmt_le;
} sample_fmt_entries[] = {
{ AV_SAMPLE_FMT_U8, "u8", "u8" },
{ AV_SAMPLE_FMT_S16, "s16be", "s16le" },
{ AV_SAMPLE_FMT_S32, "s32be", "s32le" },
{ AV_SAMPLE_FMT_FLT, "f32be", "f32le" },
{ AV_SAMPLE_FMT_DBL, "f64be", "f64le" },
};
*fmt = NULL;
for (i = 0; i < FF_ARRAY_ELEMS(sample_fmt_entries); i++) {
struct sample_fmt_entry *entry = &sample_fmt_entries[i];
if (sample_fmt == entry->sample_fmt) {
*fmt = AV_NE(entry->fmt_be, entry->fmt_le);
return 0;
}
}
fprintf(stderr,
"Sample format %s not supported as output format\n",
av_get_sample_fmt_name(sample_fmt));
return AVERROR(EINVAL);
}
/**
* Fill dst buffer with nb_samples, generated starting from t.
*/
static void fill_samples(double *dst, int nb_samples, int nb_channels, int sample_rate, double *t)
{
int i, j;
double tincr = 1.0 / sample_rate, *dstp = dst;
const double c = 2 * M_PI * 440.0;
/* generate sin tone with 440Hz frequency and duplicated channels */
for (i = 0; i < nb_samples; i++) {
*dstp = sin(c * *t);
for (j = 1; j < nb_channels; j++)
dstp[j] = dstp[0];
dstp += nb_channels;
*t += tincr;
}
}
int main(int argc, char **argv)
{
int64_t src_ch_layout = AV_CH_LAYOUT_STEREO, dst_ch_layout = AV_CH_LAYOUT_SURROUND;
int src_rate = 48000, dst_rate = 44100;
uint8_t **src_data = NULL, **dst_data = NULL, **dst_data2 = NULL;
int src_nb_channels = 0, dst_nb_channels = 0;
int src_linesize, dst_linesize;
int src_nb_samples = 1024, dst_nb_samples, max_dst_nb_samples, dst_nb_samples2, max_dst_nb_samples2;
enum AVSampleFormat src_sample_fmt = AV_SAMPLE_FMT_DBL, dst_sample_fmt = AV_SAMPLE_FMT_S16;
const char *dst_filename = NULL, *dst_filename2 = NULL;
FILE *dst_file, *dst_file2;
int dst_bufsize, dst_bufsize2;
const char *fmt;
struct SwrContext *swr_ctx;
struct SwrContext *swr_ctx2;
double t;
int ret;
if (argc != 3) {
fprintf(stderr, "Usage: %s output_file_first output_file_second\n"
"API example program to show how to resample an audio stream with libswresample.\n"
"This program generates a series of audio frames, resamples them to a specified "
"output format and rate and saves them to an output file named output_file.\n",
argv[0]);
exit(1);
}
dst_filename = argv[1];
dst_filename2 = argv[2];
dst_file = fopen(dst_filename, "wb");
if (!dst_file) {
fprintf(stderr, "Could not open destination file %s\n", dst_filename);
exit(1);
}
dst_file2 = fopen(dst_filename2, "wb");
if (!dst_file2) {
fprintf(stderr, "Could not open destination file 2 %s\n", dst_filename2);
exit(1);
}
/* create resampler context */
swr_ctx = swr_alloc();
if (!swr_ctx) {
fprintf(stderr, "Could not allocate resampler context\n");
ret = AVERROR(ENOMEM);
goto end;
}
/* set options */
av_opt_set_int(swr_ctx, "in_channel_layout", src_ch_layout, 0);
av_opt_set_int(swr_ctx, "in_sample_rate", src_rate, 0);
av_opt_set_sample_fmt(swr_ctx, "in_sample_fmt", src_sample_fmt, 0);
av_opt_set_int(swr_ctx, "out_channel_layout", dst_ch_layout, 0);
av_opt_set_int(swr_ctx, "out_sample_rate", dst_rate, 0);
av_opt_set_sample_fmt(swr_ctx, "out_sample_fmt", dst_sample_fmt, 0);
/* initialize the resampling context */
if ((ret = swr_init(swr_ctx)) < 0) {
fprintf(stderr, "Failed to initialize the resampling context\n");
goto end;
}
/* create resampler context 2 */
swr_ctx2 = swr_alloc();
if (!swr_ctx2) {
fprintf(stderr, "Could not allocate resampler context 2\n");
ret = AVERROR(ENOMEM);
goto end;
}
/* set options */
av_opt_set_int(swr_ctx2, "in_channel_layout", dst_ch_layout, 0);
av_opt_set_int(swr_ctx2, "in_sample_rate", dst_rate, 0);
av_opt_set_sample_fmt(swr_ctx2, "in_sample_fmt", dst_sample_fmt, 0);
av_opt_set_int(swr_ctx2, "out_channel_layout", dst_ch_layout, 0);
av_opt_set_int(swr_ctx2, "out_sample_rate", 32000, 0);
av_opt_set_sample_fmt(swr_ctx2, "out_sample_fmt", dst_sample_fmt, 0);
/* initialize the resampling context */
if ((ret = swr_init(swr_ctx2)) < 0) {
fprintf(stderr, "Failed to initialize the resampling context 2\n");
goto end;
}
/* allocate source and destination samples buffers */
src_nb_channels = av_get_channel_layout_nb_channels(src_ch_layout);
ret = av_samples_alloc_array_and_samples(&src_data, &src_linesize, src_nb_channels,
src_nb_samples, src_sample_fmt, 0);
if (ret < 0) {
fprintf(stderr, "Could not allocate source samples\n");
goto end;
}
/* compute the number of converted samples: buffering is avoided
* ensuring that the output buffer will contain at least all the
* converted input samples */
max_dst_nb_samples = dst_nb_samples =
av_rescale_rnd(src_nb_samples, dst_rate, src_rate, AV_ROUND_UP);
/* buffer is going to be directly written to a rawaudio file, no alignment */
dst_nb_channels = av_get_channel_layout_nb_channels(dst_ch_layout);
ret = av_samples_alloc_array_and_samples(&dst_data, &dst_linesize, dst_nb_channels,
dst_nb_samples, dst_sample_fmt, 0);
if (ret < 0) {
fprintf(stderr, "Could not allocate destination samples\n");
goto end;
}
/* compute the number of converted samples: buffering is avoided
* ensuring that the output buffer will contain at least all the
* converted input samples */
max_dst_nb_samples2 = dst_nb_samples2 =
av_rescale_rnd(dst_nb_samples, 32000, dst_rate, AV_ROUND_UP);
/* buffer is going to be directly written to a rawaudio file, no alignment */
// dst_nb_channels2 = av_get_channel_layout_nb_channels(dst_ch_layout);
ret = av_samples_alloc_array_and_samples(&dst_data2, &dst_linesize, dst_nb_channels,
dst_nb_samples2, dst_sample_fmt, 0);
if (ret < 0) {
fprintf(stderr, "Could not allocate destination samples 2\n");
goto end;
}
t = 0;
do {
/* generate synthetic audio */
fill_samples((double *)src_data[0], src_nb_samples, src_nb_channels, src_rate, &t);
/* compute destination number of samples */
dst_nb_samples = av_rescale_rnd(swr_get_delay(swr_ctx, src_rate) +
src_nb_samples, dst_rate, src_rate, AV_ROUND_UP);
if (dst_nb_samples > max_dst_nb_samples) {
av_freep(&dst_data[0]);
ret = av_samples_alloc(dst_data, &dst_linesize, dst_nb_channels,
dst_nb_samples, dst_sample_fmt, 1);
if (ret < 0)
break;
max_dst_nb_samples = dst_nb_samples;
}
/* convert to destination format */
ret = swr_convert(swr_ctx, dst_data, dst_nb_samples, (const uint8_t **)src_data, src_nb_samples);
if (ret < 0) {
fprintf(stderr, "Error while converting\n");
goto end;
}
dst_bufsize = av_samples_get_buffer_size(&dst_linesize, dst_nb_channels,
ret, dst_sample_fmt, 1);
if (dst_bufsize < 0) {
fprintf(stderr, "Could not get sample buffer size\n");
goto end;
}
printf("t:%f in:%d out:%d\n", t, src_nb_samples, ret);
fwrite(dst_data[0], 1, dst_bufsize, dst_file);
/* compute destination number of samples 2 */
dst_nb_samples2 = av_rescale_rnd(swr_get_delay(swr_ctx2, dst_rate) +
dst_nb_samples2, 32000, dst_rate, AV_ROUND_UP);
if (dst_nb_samples2 > max_dst_nb_samples2) {
av_freep(&dst_data2[0]);
ret = av_samples_alloc(dst_data2, &dst_linesize, dst_nb_channels,
dst_nb_samples2, dst_sample_fmt, 1);
if (ret < 0)
break;
max_dst_nb_samples2 = dst_nb_samples2;
}
/* convert to destination format */
ret = swr_convert(swr_ctx2, dst_data2, dst_nb_samples2, (const uint8_t **)dst_data, dst_nb_samples);
if (ret < 0) {
fprintf(stderr, "Error while converting 2\n");
goto end;
}
dst_bufsize2 = av_samples_get_buffer_size(&dst_linesize, dst_nb_channels,
ret, dst_sample_fmt, 1);
if (dst_bufsize2 < 0) {
fprintf(stderr, "Could not get sample buffer size 2\n");
goto end;
}
printf("t:%f in:%d out:%d\n", t, dst_nb_samples, ret);
fwrite(dst_data2[0], 1, dst_bufsize2, dst_file2);
} while (t < 10);
if ((ret = get_format_from_sample_fmt(&fmt, dst_sample_fmt)) < 0)
goto end;
fprintf(stderr, "Resampling succeeded. Play the output file with the command:\n"
"ffplay -f %s -channel_layout %"PRId64" -channels %d -ar %d %s\n",
fmt, dst_ch_layout, dst_nb_channels, dst_rate, dst_filename);
end:
fclose(dst_file);
if (src_data)
av_freep(&src_data[0]);
av_freep(&src_data);
if (dst_data)
av_freep(&dst_data[0]);
av_freep(&dst_data);
swr_free(&swr_ctx);
return ret < 0;
}