
Recherche avancée
Médias (1)
-
Sintel MP4 Surround 5.1 Full
13 mai 2011, par
Mis à jour : Février 2012
Langue : English
Type : Video
Autres articles (89)
-
MediaSPIP v0.2
21 juin 2013, parMediaSPIP 0.2 est la première version de MediaSPIP stable.
Sa date de sortie officielle est le 21 juin 2013 et est annoncée ici.
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Comme pour la version précédente, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...) -
Le profil des utilisateurs
12 avril 2011, parChaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...) -
MediaSPIP version 0.1 Beta
16 avril 2011, parMediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)
Sur d’autres sites (6309)
-
How do I proceed in an attempt to find audio files which play the same song but are in different compressed formats ?
7 février 2015, par user2493303all i want is suppose i have same song named as song.mp3 and song.aac now i want my program to identify that they are same, i know this is non-trivail task to do.
so far i have tried fingerprinting audio using dejavu python library which produces 2 different fingerprints for our case song.mp3 and song.aac, hence it doesnt suit need of my program.
I also tried MD5 using FFMPEG but as expected it gives different hash for even same songs downloaded from different websites
Do you guys have any idea how do I proceed ?
It would be even great to provide me step wise procedure and library to achieve my goal.
thank you -
WARN : Tried to pass invalid video frame, marking as broken : Your frame has data type int64, but we require uint8
5 septembre 2019, par Tavo DiazI am doing some Udemy AI courses and came across with one that "teaches" a bidimensional cheetah how to walk. I was doing the exercises on my computer, but it takes too much time. I decided to use Google Cloud to run the code and see the results some hours after. Nevertheless, when I run the code I get the following error " WARN : Tried to pass
invalid video frame, marking as broken : Your frame has data type int64, but we require uint8 (i.e. RGB values from 0-255)".After the code is executed, I see into the folder and I don’t see any videos (just the meta info).
Some more info (if it helps) :
I have a 1 CPU (4g), SSD Ubuntu 16.04 LTSI have not tried anything yet to solve it because I don´t know what to try. Im looking for solutions on the web, but nothing I could try.
This is the code
import os
import numpy as np
import gym
from gym import wrappers
import pybullet_envs
class Hp():
def __init__(self):
self.nb_steps = 1000
self.episode_lenght = 1000
self.learning_rate = 0.02
self.nb_directions = 32
self.nb_best_directions = 32
assert self.nb_best_directions <= self.nb_directions
self.noise = 0.03
self.seed = 1
self.env_name = 'HalfCheetahBulletEnv-v0'
class Normalizer():
def __init__(self, nb_inputs):
self.n = np.zeros(nb_inputs)
self.mean = np.zeros(nb_inputs)
self.mean_diff = np.zeros(nb_inputs)
self.var = np.zeros(nb_inputs)
def observe(self, x):
self.n += 1.
last_mean = self.mean.copy()
self.mean += (x - self.mean) / self.n
#abajo es el online numerator update
self.mean_diff += (x - last_mean) * (x - self.mean)
#abajo online computation de la varianza
self.var = (self.mean_diff / self.n).clip(min = 1e-2)
def normalize(self, inputs):
obs_mean = self.mean
obs_std = np.sqrt(self.var)
return (inputs - obs_mean) / obs_std
class Policy():
def __init__(self, input_size, output_size):
self.theta = np.zeros((output_size, input_size))
def evaluate(self, input, delta = None, direction = None):
if direction is None:
return self.theta.dot(input)
elif direction == 'positive':
return (self.theta + hp.noise * delta).dot(input)
else:
return (self.theta - hp.noise * delta).dot(input)
def sample_deltas(self):
return [np.random.randn(*self.theta.shape) for _ in range(hp.nb_directions)]
def update (self, rollouts, sigma_r):
step = np.zeros(self.theta.shape)
for r_pos, r_neg, d in rollouts:
step += (r_pos - r_neg) * d
self.theta += hp.learning_rate / (hp.nb_best_directions * sigma_r) * step
def explore(env, normalizer, policy, direction = None, delta = None):
state = env.reset()
done = False
num_plays = 0.
#abajo puede ser promedio de las rewards
sum_rewards = 0
while not done and num_plays < hp.episode_lenght:
normalizer.observe(state)
state = normalizer.normalize(state)
action = policy.evaluate(state, delta, direction)
state, reward, done, _ = env.step(action)
reward = max(min(reward, 1), -1)
#abajo sería poner un promedio
sum_rewards += reward
num_plays += 1
return sum_rewards
def train (env, policy, normalizer, hp):
for step in range(hp.nb_steps):
#iniciar las perturbaciones deltas y los rewards positivos/negativos
deltas = policy.sample_deltas()
positive_rewards = [0] * hp.nb_directions
negative_rewards = [0] * hp.nb_directions
#sacar las rewards en la dirección positiva
for k in range(hp.nb_directions):
positive_rewards[k] = explore(env, normalizer, policy, direction = 'positive', delta = deltas[k])
#sacar las rewards en dirección negativo
for k in range(hp.nb_directions):
negative_rewards[k] = explore(env, normalizer, policy, direction = 'negative', delta = deltas[k])
#sacar todas las rewards para sacar la desvest
all_rewards = np.array(positive_rewards + negative_rewards)
sigma_r = all_rewards.std()
#acomodar los rollauts por el max (r_pos, r_neg) y seleccionar la mejor dirección
scores = {k:max(r_pos, r_neg) for k, (r_pos, r_neg) in enumerate(zip(positive_rewards, negative_rewards))}
order = sorted(scores.keys(), key = lambda x:scores[x])[:hp.nb_best_directions]
rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order]
#actualizar policy
policy.update (rollouts, sigma_r)
#poner el final reward del policy luego del update
reward_evaluation = explore (env, normalizer, policy)
print('Paso: ', step, 'Lejania: ', reward_evaluation)
def mkdir(base, name):
path = os.path.join(base, name)
if not os.path.exists(path):
os.makedirs(path)
return path
work_dir = mkdir('exp', 'brs')
monitor_dir = mkdir(work_dir, 'monitor')
hp = Hp()
np.random.seed(hp.seed)
env = gym.make(hp.env_name)
env = wrappers.Monitor(env, monitor_dir, force = True)
nb_inputs = env.observation_space.shape[0]
nb_outputs = env.action_space.shape[0]
policy = Policy(nb_inputs, nb_outputs)
normalizer = Normalizer(nb_inputs)
train(env, policy, normalizer, hp) -
Revision 53844275e9 : Fix potential ioc issue in vp9_get_prob for 4K above sizes This commit turns on
25 juillet 2014, par Jingning HanChanged Paths :
Modify /test/frame_size_tests.cc
Modify /vp9/common/vp9_prob.h
Fix potential ioc issue in vp9_get_prob for 4K above sizesThis commit turns on the existing vp9_get_prob function using
64 bit in the intermediate step. It fixes the ioc issue for 4K
above frame sizes (issue 828).Change-Id : I9f627f3beca2c522f73b38fd2a3e7eefdff01a7c