
Recherche avancée
Médias (1)
-
SPIP - plugins - embed code - Exemple
2 septembre 2013, par
Mis à jour : Septembre 2013
Langue : français
Type : Image
Autres articles (98)
-
Creating farms of unique websites
13 avril 2011, parMediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...) -
Keeping control of your media in your hands
13 avril 2011, parThe vocabulary used on this site and around MediaSPIP in general, aims to avoid reference to Web 2.0 and the companies that profit from media-sharing.
While using MediaSPIP, you are invited to avoid using words like "Brand", "Cloud" and "Market".
MediaSPIP is designed to facilitate the sharing of creative media online, while allowing authors to retain complete control of their work.
MediaSPIP aims to be accessible to as many people as possible and development is based on expanding the (...) -
Automated installation script of MediaSPIP
25 avril 2011, parTo overcome the difficulties mainly due to the installation of server side software dependencies, an "all-in-one" installation script written in bash was created to facilitate this step on a server with a compatible Linux distribution.
You must have access to your server via SSH and a root account to use it, which will install the dependencies. Contact your provider if you do not have that.
The documentation of the use of this installation script is available here.
The code of this (...)
Sur d’autres sites (6400)
-
FFMPEG FFBROBE Get Frame Count On Powershell [duplicate]
27 avril 2020, par ilham zackyI am new to FFmpeg, I have some audio and video files, I need to get the duration with frames, I need it in this format H:M:S:F - "00:00:00:00", I am using Powershell



currently, my duration works, but instead of frames, it prints a decimal value.
note : in my output maximum number of frames should be 30



This is my code



$audioId = "$id.m4a"
$videoId = "$id.mp4"

$duration1 = if ((ffprobe -i $audioId 2>&1 | Out-String) -match 'Duration:\s+([\d:"."]+)') { $matches[1] };

$duration = if ((ffmpeg -i $videoId 2>&1 | Out-String) -match 'Duration:\s+([\d:"."]+)') { $matches[1] };

$newduration1 = ("$duration1").Replace(".",":")
$newduration = ("$duration").Replace(".",":")

echo $duration1 
echo $duration





my output be like



00:00:03.48
00:00:03.46




-
Is ffmpeg giving incorrect frame count ?
15 mai 2020, par trshmanxThe videos
Duration: 00:00:06.93
and25 fps

If we do the math it's 173.25 (173 rounded) frames.
However this commandffmpeg -i video.mp4 -qscale:v 1 filename_%06d.jpg
extracts 172 frames. Am I calculating or doing something wrong ?
I want to use this of some automation in my Python project.


Edit :



I do have video frame in 6.840000



[FRAME]
media_type=video
stream_index=1
key_frame=0
pkt_pts=171000
pkt_pts_time=6.840000
pkt_dts=N/A
pkt_dts_time=N/A
best_effort_timestamp=171000
best_effort_timestamp_time=6.840000
pkt_duration=1000
pkt_duration_time=0.040000
pkt_pos=22689592
pkt_size=213060
width=1920
height=1080
pix_fmt=yuv420p
sample_aspect_ratio=N/A
pict_type=P
coded_picture_number=169
display_picture_number=0
interlaced_frame=0
top_field_first=0
repeat_pict=0
color_range=tv
color_space=bt709
color_primaries=bt709
color_transfer=bt709
chroma_location=left
[/FRAME]




My full frame dump here



Edit 2 :



My intention is to get the frames exactly, as when watching the video. I don't care about some frame being longer / shorter, audio longer etc. I tried to force the fps
ffmpeg -i LUCKY_BRUNETTE.mp4 -vf fps=25 -qscale:v 1 filename_%06d.jpg
but still got 172 frames.

-
ffmpeg to count words in audio text
17 juillet 2020, par Joel ParkerI am new to signal processing but wanted to take an audio file and determine how many words are spoken in one minute. I was thinking I could use the top of the loudness peaks to count the words but do not quite understand how to achieve this.


First I used ffmpeg to remove the audio from the mp4 file I am using :


ffmpeg -i courtcase.mp4 audiofile.mp4


Then I tried to detect the loudness :


ffmpeg -t 10 -i audiofile.mp4 -af "volumedetect" -f null /dev/null


This produced some statistical information :


video:157kB audio:1723kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: unknown
[Parsed_volumedetect_0 @ 0x7fa6b26068c0] n_samples: 882000
[Parsed_volumedetect_0 @ 0x7fa6b26068c0] mean_volume: -20.6 dB
[Parsed_volumedetect_0 @ 0x7fa6b26068c0] max_volume: -4.0 dB
[Parsed_volumedetect_0 @ 0x7fa6b26068c0] histogram_4db: 64
[Parsed_volumedetect_0 @ 0x7fa6b26068c0] histogram_5db: 88
[Parsed_volumedetect_0 @ 0x7fa6b26068c0] histogram_6db: 220
[Parsed_volumedetect_0 @ 0x7fa6b26068c0] histogram_7db: 843




I am not sure why it still shows 157kB of video, maybe my first command is wrong ?


Anyway, assuming the file is just audio I found this command, which I believe shows dbm slices for 10 seconds :


ffmpeg -i audiofile.mp4 -af astats=metadata=1:reset=1,ametadata=print:key=lavfi.astats.Overall.RMS_level:file=- -f null -



and it produced a bunch of output :


video:5782kB audio:63504kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: unknown
[Parsed_astats_0 @ 0x7ff74c004bc0] Channel: 1
[Parsed_astats_0 @ 0x7ff74c004bc0] DC offset: 0.000240
[Parsed_astats_0 @ 0x7ff74c004bc0] Min level: -0.166239
[Parsed_astats_0 @ 0x7ff74c004bc0] Max level: 0.127112
[Parsed_astats_0 @ 0x7ff74c004bc0] Min difference: 0.000003
[Parsed_astats_0 @ 0x7ff74c004bc0] Max difference: 0.025335
[Parsed_astats_0 @ 0x7ff74c004bc0] Mean difference: 0.004455
[Parsed_astats_0 @ 0x7ff74c004bc0] RMS difference: 0.006165
[Parsed_astats_0 @ 0x7ff74c004bc0] Peak level dB: -15.585332
[Parsed_astats_0 @ 0x7ff74c004bc0] RMS level dB: -26.251394
[Parsed_astats_0 @ 0x7ff74c004bc0] RMS peak dB: -26.251394
[Parsed_astats_0 @ 0x7ff74c004bc0] RMS trough dB: -26.251394
[Parsed_astats_0 @ 0x7ff74c004bc0] Crest factor: 3.414311
[Parsed_astats_0 @ 0x7ff74c004bc0] Flat factor: 0.000000
[Parsed_astats_0 @ 0x7ff74c004bc0] Peak count: 2
[Parsed_astats_0 @ 0x7ff74c004bc0] Noise floor dB: nan
[Parsed_astats_0 @ 0x7ff74c004bc0] Noise floor count: 0
[Parsed_astats_0 @ 0x7ff74c004bc0] Bit depth: 32/32
[Parsed_astats_0 @ 0x7ff74c004bc0] Dynamic range: 72.297593
[Parsed_astats_0 @ 0x7ff74c004bc0] Zero crossings: 74
[Parsed_astats_0 @ 0x7ff74c004bc0] Zero crossings rate: 0.072266
[Parsed_astats_0 @ 0x7ff74c004bc0] Number of NaNs: 0
[Parsed_astats_0 @ 0x7ff74c004bc0] Number of Infs: 0
[Parsed_astats_0 @ 0x7ff74c004bc0] Number of denormals: 0
[Parsed_astats_0 @ 0x7ff74c004bc0] Channel: 2
[Parsed_astats_0 @ 0x7ff74c004bc0] DC offset: 0.000240
[Parsed_astats_0 @ 0x7ff74c004bc0] Min level: -0.166239
[Parsed_astats_0 @ 0x7ff74c004bc0] Max level: 0.127112
[Parsed_astats_0 @ 0x7ff74c004bc0] Min difference: 0.000003
[Parsed_astats_0 @ 0x7ff74c004bc0] Max difference: 0.025335
[Parsed_astats_0 @ 0x7ff74c004bc0] Mean difference: 0.004455
[Parsed_astats_0 @ 0x7ff74c004bc0] RMS difference: 0.006165
[Parsed_astats_0 @ 0x7ff74c004bc0] Peak level dB: -15.585332
[Parsed_astats_0 @ 0x7ff74c004bc0] RMS level dB: -26.251394
[Parsed_astats_0 @ 0x7ff74c004bc0] RMS peak dB: -26.251394
[Parsed_astats_0 @ 0x7ff74c004bc0] RMS trough dB: -26.251394
[Parsed_astats_0 @ 0x7ff74c004bc0] Crest factor: 3.414311
[Parsed_astats_0 @ 0x7ff74c004bc0] Flat factor: 0.000000
[Parsed_astats_0 @ 0x7ff74c004bc0] Peak count: 2
[Parsed_astats_0 @ 0x7ff74c004bc0] Noise floor dB: nan
[Parsed_astats_0 @ 0x7ff74c004bc0] Noise floor count: 0
[Parsed_astats_0 @ 0x7ff74c004bc0] Bit depth: 32/32
[Parsed_astats_0 @ 0x7ff74c004bc0] Dynamic range: 72.297593
[Parsed_astats_0 @ 0x7ff74c004bc0] Zero crossings: 74
[Parsed_astats_0 @ 0x7ff74c004bc0] Zero crossings rate: 0.072266
[Parsed_astats_0 @ 0x7ff74c004bc0] Number of NaNs: 0
[Parsed_astats_0 @ 0x7ff74c004bc0] Number of Infs: 0
[Parsed_astats_0 @ 0x7ff74c004bc0] Number of denormals: 0
[Parsed_astats_0 @ 0x7ff74c004bc0] Overall
[Parsed_astats_0 @ 0x7ff74c004bc0] DC offset: 0.000240
[Parsed_astats_0 @ 0x7ff74c004bc0] Min level: -0.166239
[Parsed_astats_0 @ 0x7ff74c004bc0] Max level: 0.127112
[Parsed_astats_0 @ 0x7ff74c004bc0] Min difference: 0.000003
[Parsed_astats_0 @ 0x7ff74c004bc0] Max difference: 0.025335
[Parsed_astats_0 @ 0x7ff74c004bc0] Mean difference: 0.004455
[Parsed_astats_0 @ 0x7ff74c004bc0] RMS difference: 0.006165
[Parsed_astats_0 @ 0x7ff74c004bc0] Peak level dB: -15.585332
[Parsed_astats_0 @ 0x7ff74c004bc0] RMS level dB: -26.251394
[Parsed_astats_0 @ 0x7ff74c004bc0] RMS peak dB: -26.251394
[Parsed_astats_0 @ 0x7ff74c004bc0] RMS trough dB: -26.251394
[Parsed_astats_0 @ 0x7ff74c004bc0] Flat factor: 0.000000
[Parsed_astats_0 @ 0x7ff74c004bc0] Peak count: 2.000000
[Parsed_astats_0 @ 0x7ff74c004bc0] Noise floor dB: nan
[Parsed_astats_0 @ 0x7ff74c004bc0] Noise floor count: 0.000000
[Parsed_astats_0 @ 0x7ff74c004bc0] Bit depth: 32/32
[Parsed_astats_0 @ 0x7ff74c004bc0] Number of samples: 1024
[Parsed_astats_0 @ 0x7ff74c004bc0] Number of NaNs: 0.000000
[Parsed_astats_0 @ 0x7ff74c004bc0] Number of Infs: 0.000000
[Parsed_astats_0 @ 0x7ff74c004bc0] Number of denormals: 0.000000
ts_time:368.268
lavfi.astats.Overall.RMS_level=-29.670653
frame:15861 pts:16241664 pts_time:368.292
lavfi.astats.Overall.RMS_level=-30.851195
frame:15862 pts:16242688 pts_time:368.315
lavfi.astats.Overall.RMS_level=-30.700943
frame:15863 pts:16243712 pts_time:368.338
lavfi.astats.Overall.RMS_level=-33.638604
frame:15864 pts:16244736 pts_time:368.361
lavfi.astats.Overall.RMS_level=-21.873170
frame:15865 pts:16245760 pts_time:368.385
lavfi.astats.Overall.RMS_level=-20.001936
frame:15866 pts:16246784 pts_time:368.408
lavfi.astats.Overall.RMS_level=-18.571318
frame:15867 pts:16247808 pts_time:368.431
lavfi.astats.Overall.RMS_level=-18.470749
frame:15868 pts:16248832 pts_time:368.454
lavfi.astats.Overall.RMS_level=-19.506688
frame:15869 pts:16249856 pts_time:368.477
lavfi.astats.Overall.RMS_level=-21.270579
frame:15870 pts:16250880 pts_time:368.501
lavfi.astats.Overall.RMS_level=-25.007862
frame:15871 pts:16251904 pts_time:368.524
lavfi.astats.Overall.RMS_level=-25.654372
frame:15872 pts:16252928 pts_time:368.547
lavfi.astats.Overall.RMS_level=-24.948357
frame:15873 pts:16253952 pts_time:368.57
lavfi.astats.Overall.RMS_level=-30.523540
frame:15874 pts:16254976 pts_time:368.594
....



This is where I'm stuck. I think I have the information I need to determine the number of words spoken in a minute, except I don't know how to put all together. Also the last command just measures 10s slices, would I need to change that to 60s ? Does anyone know how to do this or if there is a better approach ?