
Recherche avancée
Autres articles (63)
-
ANNEXE : Les plugins utilisés spécifiquement pour la ferme
5 mars 2010, parLe site central/maître de la ferme a besoin d’utiliser plusieurs plugins supplémentaires vis à vis des canaux pour son bon fonctionnement. le plugin Gestion de la mutualisation ; le plugin inscription3 pour gérer les inscriptions et les demandes de création d’instance de mutualisation dès l’inscription des utilisateurs ; le plugin verifier qui fournit une API de vérification des champs (utilisé par inscription3) ; le plugin champs extras v2 nécessité par inscription3 (...)
-
Websites made with MediaSPIP
2 mai 2011, parThis page lists some websites based on MediaSPIP.
-
Creating farms of unique websites
13 avril 2011, parMediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...)
Sur d’autres sites (10848)
-
Re-solving My Search Engine Problem
14 years ago, I created a web database of 8-bit Nintendo Entertainment System games. To make it useful, I developed a very primitive search feature.
A few months ago, I decided to create a web database of video game music. To make it useful, I knew it would need to have a search feature. I realized I needed to solve the exact same problem again.
Requirements
The last time I solved this problem, I came up with an excruciatingly naïve idea. Hey, it worked. I really didn’t want to deploy the same solution again because it felt so silly the first time. Surely there are many better ways to solve it now ? Many different workable software solutions that do all the hard work for me ?The first time I attacked this, it was 1998 and hosting resources were scarce. On my primary web host I was able to put static HTML pages, perhaps with server side includes. The web host also offered dynamic scripting capabilities via something called htmlscript (a.k.a. MIVA Script). I had a secondary web host in my ISP which allowed me to host conventional CGI scripts on a Unix host, so that’s where I hosted the search function (Perl CGI script accessing a key/value data store file).
Nowadays, sky’s the limit. Any type of technology you want to deploy should be tractable. Still, a key requirement was that I didn’t want to pay for additional hosting resources for this silly little side project. That leaves me with options that my current shared web hosting plan allows, which includes such advanced features as PHP, Perl and Python scripts. I can also access MySQL.
Candidates
There are a lot of mature software packages out there which can index and search data and be plugged into a website. But a lot of them would be unworkable on my web hosting plan due to language or library package limitations. Further, a lot of them feel like overkill. At the most basic level, all I really want to do is map a series of video game titles to URLs in a website.Based on my research, Lucene seems to hold a fair amount of mindshare as an open source indexing and search solution. But I was unsure of my ability to run it on my hosting plan. I think MySQL does some kind of full text search, so I could have probably made a solution around that. Again, it just feels like way more power than I need for this project.
I used Swish-e once about 3 years ago for a little project. I wasn’t confident of my ability to run that on my server either. It has a Perl API but it requires custom modules.
My quest for a search solution grew deep enough that I started perusing a textbook on information retrieval techniques in preparation for possibly writing my own solution from scratch. However, in doing so, I figured out how I might subvert an existing solution to do what I want.
Back to Swish-e
Again, all I wanted to do was pull data out of a database and map that data to a URL in a website. Reading the Swish-e documentation, I learned that the software supports a mode specifically tailored for this. Rather than asking Swish-e to index a series of document files living on disk, you can specify a script for Swish-e to run and the script will generate what appears to be a set of phantom documents for Swish-e to index.
When I ’add’ a game music file to the game music website, I have a scripts that scrape the metadata (game title, system, song titles, composers, company, copyright, the original file name on disk, even the ripper/dumper who extracted the chiptune in the first place) and store it all in an SQLite database. When it’s time to update the database, another script systematically generates a series of pseudo-documents that spell out the metadata for each game and prefix each document with a path name. Searching for a term in the index returns a lists of paths that contain the search term. Thus, it makes sense for that path to be a site URL.
But what about a web script which can search this Swish-e index ? That’s when I noticed Swish-e’s C API and came up with a crazy idea : Write the CGI script directly in C. It feels like sheer madness (or at least the height of software insecurity) to write a CGI script directly in C in this day and age. But it works (with the help of cgic for input processing), just as long as I statically link the search script with libswish-e.a (and libz.a). The web host is an x86 machine, after all.
I’m not proud of what I did here— I’m proud of how little I had to do here. The searching CGI script is all of about 30 lines of C code. The one annoyance I experienced while writing it is that I had to consult the Swish-e source code to learn how to get my search results (the "swishdocpath" key — or any other key — for SwishResultPropertyStr() is not documented). Also, the C program just does the simplest job possible, only querying the term in the index and returning the results in plaintext, in order of relevance, to the client-side JavaScript code which requested them. JavaScript gets the job of sorting and grouping the results for presentation.
Tuning the Search
Almost immediately, I noticed that the search engine could not find one of my favorite SNES games, U.N. Squadron. That’s because all of its associated metadata names Area 88, the game’s original title. Thus, I had to modify the metadata database to allow attaching somewhat free-form tags to games in order to compensate. In this case, an alias title would show up in the game’s pseudo-document.Roman numerals are still a thorn in my side, just as they were 14 years ago in my original iteration. I dealt with it back then by converting all numbers to Roman numerals during the index and searching processes. I’m not willing to do that for this case and I’m still looking for a good solution.
Another annoying problem deals with Mega Man, a popular franchise. The proper spelling is 2 words but it’s common for people to mash it into one word, Megaman (see also : Spider-Man, Spiderman, Spider Man). The index doesn’t gracefully deal with that and I have some hacks in place to cope for the time being.
Positive Results
I’m pleased with the results so far, and so are the users I have heard from. I know one user expressed amazement that a search for Castlevania turned up Akumajou Densetsu, the Japanese version of Castlevania III : Dracula’s Curse. This didn’t surprise me because I manually added a hint for that mapping. (BTW, if you are a fan of Castlevania III, definitely check out the Akumajou Densetsu soundtrack which has an upgraded version of the same soundtrack using special audio channels.)I was a little more surprised when a user announced that searching for ’probotector’ correctly turned up Contra : Hard Corps. I looked into why this was. It turns out that the original chiptune filename was extremely descriptive : "Contra - Hard Corps [Probotector] (1994-08-08)(Konami)". The filenames themselves often carry a bunch of useful metadata which is why it’s important to index those as well.
And of course, many rippers, dumpers, and taggers have labored for over a decade to lovingly tag these songs with as much composer information as possible, which all gets indexed. The search engine gets a lot of compliments for its ability to find many songs written by favorite composers.
-
lower latency LAN video streaming to Android ? [closed]
8 janvier 2020, par LargeMoneyBanksI am trying to stream desktop video from windows to an Android device on the same network, but seeing huge latency even streaming windows to windows.
Technically streaming to a unity game using this asset that doesnt support udp but DOES support HTTPS,HTTP,HLS,RTSP,RTMP. https://assetstore.unity.com/packages/tools/video/ump-android-ios-56044
With some help from a friend I am using ffmpeg for capture, encoding, and streaming with this command :
.\ffmpeg -threads 8 -f gdigrab -framerate 60 -i desktop -c:v libx264 -refs 3 -g 60 -loglevel debug -pix_fmt yuv420p -slices 8 -an -preset ultrafast -tune zerolatency -f mpegts -listen 1 tcp://0.0.0.0:1234
Latency is still around 4 seconds even playing the stream on the same PC as hosting, and fiddling with the network cache. Lowering resolution, fps etc doesn’t change latency. This is my first endeavor into optimizing any kind of streaming so I am a little lost. Anyone know what I might be doing wrong or how I can get to at least under 1 second ?
Thank you !
-
Translating Return To Ringworld
17 août 2016, par Multimedia Mike — Game HackingAs indicated in my previous post, the Translator has expressed interest in applying his hobby towards another DOS adventure game from the mid 1990s : Return to Ringworld (henceforth R2RW) by Tsunami Media. This represents significantly more work than the previous outing, Phantasmagoria.
Return to Ringworld Title Screen
I have been largely successful thus far in crafting translation tools. I have pushed the fruits of these labors to a Github repository named improved-spoon (named using Github’s random name generator because I wanted something more interesting than ‘game-hacking-tools’).
Further, I have recorded everything I have learned about the game’s resource format (named RLB) at the XentaxWiki.
New Challenges
The previous project mostly involved scribbling subtitle text on an endless series of video files by leveraging a separate software library which took care of rendering fonts. In contrast, R2RW has at least 30k words of English text contained in various blocks which require translation. Further, the game encodes its own fonts (9 of them) which stubbornly refuse to be useful for rendering text in nearly any other language.Thus, the immediate 2 challenges are :
- Translating volumes of text to Spanish
- Expanding the fonts to represent Spanish characters
Normally, “figuring out the file format data structures involved” is on the list as well. Thankfully, understanding the formats is not a huge challenge since the folks at the ScummVM project already did all the heavy lifting of reverse engineering the file formats.
The Pitch
Here was the plan :- Create a tool that can dump out the interesting data from the game’s master resource file.
- Create a tool that can perform the elaborate file copy described in the previous post. The new file should be bit for bit compatible with the original file.
- Modify the rewriting tool to repack some modified strings into the new resource file.
- Unpack the fonts and figure out a way to add new characters.
- Repack the new fonts into the resource file.
- Repack message strings with Spanish characters.
Showing The Work : Modifying Strings
First, I created the tool to unpack blocks of message string resources. I elected to dump the strings to disk as JSON data since it’s easy to write and read JSON using Python, and it’s quick to check if any mistakes have crept in.The next step is to find a string to focus on. So I started the game and looked for the first string I could trigger :
This shows up in the JSON string dump as :
"Spanish" : " !0205Your quarters on the Lance of Truth are spartan, in accord with your mercenary lifestyle.", "English" : " !0205Your quarters on the Lance of Truth are spartan, in accord with your mercenary lifestyle." ,
As you can see, many of the strings are encoded with an ID key as part of the string which should probably be left unmodified. I changed the Spanish string :
"Spanish" : " !0205Hey, is this thing on ?", "English" : " !0205Your quarters on the Lance of Truth are spartan, in accord with your mercenary lifestyle." ,
And then I wrote the repacking tool to substitute this message block for the original one. Look ! The engine liked it !
Little steps, little steps.
Showing The Work : Modifying Fonts
The next little step is to find a place to put the new characters. First, a problem definition : The immediate goal is to translate the game into Spanish. The current fonts encoded in the game resource only support 128 characters, corresponding to 7-bit ASCII. In order to properly express Spanish, 16 new characters are required : á, é, Ã, ó, ú, ü, ñ (each in upper and lower case for a total of 14 characters) as well as the inverted punctuation symbols : ¿, ¡.Again, ScummVM already documents (via code) the font coding format. So I quickly determined that each of the 9 fonts is comprised of 128 individual bitmaps with either 1 or 2 bits per pixel. I wrote a tool to unpack each character into an individual portable grey map (PGM) image. These can be edited with graphics editors or with text editors since they are just text files.
Where to put the 16 new Spanish characters ? ASCII characters 1-31 are non-printable, so my first theory was that these characters would be empty and could be repurposed. However, after dumping and inspecting, I learned that they represent the same set of characters as seen in DOS Code Page 437. So that’s a no-go (so I assumed ; I didn’t check if any existing strings leveraged those characters).
My next plan was hope that I could extend the font beyond index 127 and use positions 128-143. This worked superbly. This is the new example string :
"Spanish" : " !0205¿Ves esto ? ¡La puntuacion se hace girar !", "English" : " !0205Your quarters on the Lance of Truth are spartan, in accord with your mercenary lifestyle." ,
Fortunately, JSON understands UTF-8 and after mapping the 16 necessary characters down to the numeric range of 128-143, I repacked the new fonts and the new string :
Translation : “See this ? The punctuation is rotated !”
Another victory. Notice that there are no diacritics in this string. None are required for this translation (according to Google Translate). But adding the diacritics to the 14 characters isn’t my department. My tool does help by prepopulating [aeiounAEIOUN] into the right positions to make editing easier for the Translator. But the tool does make the effort to rotate the punctuation since that is easy to automate.
Next Steps and Residual Weirdness
There is another method for storing ASCII text inside the R2RW resource called strip resources. These store conversation scripts. There are plenty of fields in the data structures that I don’t fully understand. So, following the lessons I learned from my previous translation outing, I was determined to modify as little as possible. This means copying over most of the original data structures intact, but changing the field representing the relative offset that points to the corresponding string. This works well since the strings are invariably stored NULL-terminated in a concatenated manner.I wanted to document for the record that the format that R2RW uses has some weirdness in they way it handles residual bytes in a resource. The variant of the resource format that R2RW uses requires every block to be aligned on a 16-byte boundary. If there is space between the logical end of the resource and the start of the next resource, there are random bytes in that space. This leads me to believe that these bytes were originally recorded from stale/uninitialized memory. This frustrates me because when I write the initial file copy tool which unpacks and repacks each block, I want the new file to be identical to the original. However, these apparent nonsense bytes at the end thwart that effort.
But leaving those bytes as 0 produces an acceptable resource file.
Text On Static Images
There is one last resource type we are working on translating. There are various bits of text that are rendered as images. For example, from the intro :
It’s possible to locate and extract the exact image that is overlaid on this scene, though without the colors :
The palettes are stored in a separate resource type. So it seems the challenge is to figure out the palette in use for these frames and render a transparent image that uses the same palette, then repack the new text-image into the new resource file.