Recherche avancée

Médias (10)

Mot : - Tags -/wav

Autres articles (25)

  • List of compatible distributions

    26 avril 2011, par

    The table below is the list of Linux distributions compatible with the automated installation script of MediaSPIP. Distribution nameVersion nameVersion number Debian Squeeze 6.x.x Debian Weezy 7.x.x Debian Jessie 8.x.x Ubuntu The Precise Pangolin 12.04 LTS Ubuntu The Trusty Tahr 14.04
    If you want to help us improve this list, you can provide us access to a machine whose distribution is not mentioned above or send the necessary fixes to add (...)

  • XMP PHP

    13 mai 2011, par

    Dixit Wikipedia, XMP signifie :
    Extensible Metadata Platform ou XMP est un format de métadonnées basé sur XML utilisé dans les applications PDF, de photographie et de graphisme. Il a été lancé par Adobe Systems en avril 2001 en étant intégré à la version 5.0 d’Adobe Acrobat.
    Étant basé sur XML, il gère un ensemble de tags dynamiques pour l’utilisation dans le cadre du Web sémantique.
    XMP permet d’enregistrer sous forme d’un document XML des informations relatives à un fichier : titre, auteur, historique (...)

  • Installation en mode ferme

    4 février 2011, par

    Le mode ferme permet d’héberger plusieurs sites de type MediaSPIP en n’installant qu’une seule fois son noyau fonctionnel.
    C’est la méthode que nous utilisons sur cette même plateforme.
    L’utilisation en mode ferme nécessite de connaïtre un peu le mécanisme de SPIP contrairement à la version standalone qui ne nécessite pas réellement de connaissances spécifique puisque l’espace privé habituel de SPIP n’est plus utilisé.
    Dans un premier temps, vous devez avoir installé les mêmes fichiers que l’installation (...)

Sur d’autres sites (5271)

  • FFPLAY read mp4 file from HTTP sever : report error : stream 1, offset 0x1c33 : partial file

    25 mai 2018, par whmiao

    I use command line like :

    ffplay http://192.168.4.56:5656/files/video/failed_111.mp4

    output :
    ffplay version N-87130-g2b9fd15 Copyright (c) 2003-2017 the FFmpeg developers
    built with gcc 7.1.0 (GCC)
    configuration : —enable-gpl —enable-version3 —enable-cuda —enable-cuvid —enable-d3d11va —enable-dxva2 —enable-libmfx —enable-nvenc —enable-avisynth —enable-bzlib —enable-fontconfig —enable-frei0r —enable-gnutls —enable-iconv —enable-libass —enable-libbluray —enable-libbs2b —enable-libcaca —enable-libfreetype —enable-libgme —enable-libgsm —enable-libilbc —enable-libmodplug —enable-libmp3lame —enable-libopencore-amrnb —enable-libopencore-amrwb —enable-libopenh264 —enable-libopenjpeg —enable-libopus —enable-librtmp —enable-libsnappy —enable-libsoxr —enable-libspeex —enable-libtheora —enable-libtwolame —enable-libvidstab —enable-libvo-amrwbenc —enable-libvorbis —enable-libvpx —enable-libwavpack —enable-libwebp —enable-libx264 —enable-libx265 —enable-libxavs —enable-libxvid —enable-libzimg —enable-lzma —enable-zlib
    libavutil 55. 74.100 / 55. 74.100
    libavcodec 57.104.100 / 57.104.100
    libavformat 57. 79.100 / 57. 79.100
    libavdevice 57. 8.100 / 57. 8.100
    libavfilter 6.101.100 / 6.101.100
    libswscale 4. 7.103 / 4. 7.103
    libswresample 2. 8.100 / 2. 8.100
    libpostproc 54. 6.100 / 54. 6.100
    [mov,mp4,m4a,3gp,3g2,mj2 @ 00000000025048e0] stream 1, offset 0x1c33 : partial file
    [mov,mp4,m4a,3gp,3g2,mj2 @ 00000000025048e0] Could not find codec parameters for stream 0 (Video : h264 (avc1 / 0x31637661), none(tv, bt709), 544x960, 1140 kb/s) : unspecified pixel format
    Consider increasing the value for the ’analyzeduration’ and ’probesize’ options

    I download the file,Open local storage,It works well,like :

    ffplay e:\failed_111.mp4

    file can download from :
    https://pan.baidu.com/s/19H9cl3YAjG-AK60nIn0KzQ

  • Revision 3130 : La page d’inscription ne doit être visible que si elle est autorisée dans ...

    24 mars 2010, par kent1 — Log

    La page d’inscription ne doit être visible que si elle est autorisée dans la configuration de SPIP

  • Introducing the BigQuery & Data Warehouse Export feature

    30 janvier, par Matomo Core Team

    Matomo is built on a simple truth : your data belongs to you, and you should have complete control over it. That’s why we’re excited to launch our new BigQuery & Data Warehouse Export feature for Matomo Cloud, giving you even more ways to work with your analytics data. 

    Until now, getting raw data from Matomo Cloud required APIs and custom scripts, or waiting for engineering help.  

    Our new BigQuery & Data Warehouse Export feature removes those barriers. You can now access your raw, unaggregated data and schedule regular exports straight to your data warehouse. 

    The feature works with all major data warehouses including (but not limited to) : 

    • Google BigQuery 
    • Amazon Redshift 
    • Snowflake 
    • Azure Synapse Analytics 
    • Apache Hive 
    • Teradata 

    You can schedule exports, combine your Matomo data with other data sources in your data warehouse, and easily query data with SQL-like queries. 

    Direct raw data access for greater data portability 

    Waiting for engineering support can delay your work. Managing API connections and writing scripts can be time-consuming. This keeps you from focusing on what you do best—analysing data. 

    BigQuery create-table-menu

    With the BigQuery & Data Warehouse Export feature, you get direct access to your raw Matomo data without the technical setup. So, you can spend more time analysing data and finding insights that matter. 

    Bringing your data together 

    Answering business questions often requires data from multiple sources. A single customer interaction might span your CRM, web analytics, sales systems, and more. Piecing this data together manually is time-consuming—what starts as a seemingly simple question from stakeholders can turn into hours of work collecting and comparing data across different tools. 

    This feature lets you combine your Matomo data with data from other business systems in your data warehouse. Instead of switching between tools or manually comparing spreadsheets, you can analyse all your data in one place to better understand how customers interact with your business. 

    Easy, custom analysis with SQL-like queries 

    Standard, pre-built reports often don’t address the specific, detailed questions that analysts need to answer.  

    When you use the BigQuery & Data Warehouse Export feature, you can use SQL-like queries in your data warehouse to do detailed, customised analysis. This flexibility allows you to explore your data in depth and uncover specific insights that aren’t possible with pre-built reports. 

    Here is an example of how you might use SQL-like query to compare the behaviours of paying vs. non-paying users : 

    				
                                            <xmp>SELECT  

    custom_dimension_value AS user_type, -- Assuming 'user_type' is stored in a custom dimension

    COUNT(*) AS total_visits,  

    AVG(visit_total_time) AS avg_duration,

    SUM(conversion.revenue) AS total_spent  

    FROM  

    `your_project.your_dataset.matomo_log_visit` AS visit

    LEFT JOIN  

    `your_project.your_dataset.matomo_log_conversion` AS conversion  

    ON  

    visit.idvisit = conversion.idvisit  

    GROUP BY  

    custom_dimension_value; </xmp>
                                   

    This query helps you compare metrics such as the number of visits, average session duration, and total amount spent between paying and non-paying users. It provides a full view of behavioural differences between these groups. 

    Advanced data manipulation and visualisation 

    When you need to create detailed reports or dive deep into data analysis, working within the constraints of a fixed user interface (UI) can limit your ability to draw insights. 

    Exporting your Matomo data to a data warehouse like BigQuery provides greater flexibility for in-depth manipulation and advanced visualisations, enabling you to uncover deeper insights and tailor your reports more effectively. 

    Getting started 

    To set up data warehouse exports in your Matomo : 

    1. Go to System Admin (cog icon in the top right corner) 
    2. Select ‘Export’ from the left-hand menu 
    3. Choose ‘BigQuery & Data Warehouse’ 

    You’ll find detailed instructions in our data warehouse exports guide 

    Please note, enabling this feature will cost an additional 10% of your current subscription. You can view the exact cost by following the steps above. 

    New to Matomo ? Start your 21-day free trial now (no credit card required), or request a demo.