
Recherche avancée
Autres articles (49)
-
Configurer la prise en compte des langues
15 novembre 2010, par kent1Accéder à la configuration et ajouter des langues prises en compte
Afin de configurer la prise en compte de nouvelles langues, il est nécessaire de se rendre dans la partie "Administrer" du site.
De là, dans le menu de navigation, vous pouvez accéder à une partie "Gestion des langues" permettant d’activer la prise en compte de nouvelles langues.
Chaque nouvelle langue ajoutée reste désactivable tant qu’aucun objet n’est créé dans cette langue. Dans ce cas, elle devient grisée dans la configuration et (...) -
Configuration spécifique d’Apache
4 février 2011, par kent1Modules spécifiques
Pour la configuration d’Apache, il est conseillé d’activer certains modules non spécifiques à MediaSPIP, mais permettant d’améliorer les performances : mod_deflate et mod_headers pour compresser automatiquement via Apache les pages. Cf ce tutoriel ; mode_expires pour gérer correctement l’expiration des hits. Cf ce tutoriel ;
Il est également conseillé d’ajouter la prise en charge par apache du mime-type pour les fichiers WebM comme indiqué dans ce tutoriel.
Création d’un (...) -
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir
Sur d’autres sites (6499)
-
Google Optimize vs Matomo A/B Testing : Everything You Need to Know
17 mars 2023, par Erin — Analytics TipsGoogle Optimize is a popular A/B testing tool marketers use to validate the performance of different marketing assets, website design elements and promotional offers.
But by September 2023, Google will sunset both free and paid versions of the Optimize product.
If you’re searching for an equally robust, but GDPR compliant, privacy-friendly alternative to Google Optimize, have a look at Matomo A/B Testing.
Integrated with our analytics platform and conversion rate optimisation (CRO) tools, Matomo allows you to run A/B and A/B/n tests without any usage caps or compromises in user privacy.
Disclaimer : Please note that the information provided in this blog post is for general informational purposes only and is not intended to provide legal advice. Every situation is unique and requires a specific legal analysis. If you have any questions regarding the legal implications of any matter, please consult with your legal team or seek advice from a qualified legal professional.
Google Optimize vs Matomo : Key Capabilities Compared
This guide shows how Matomo A/B testing stacks against Google Optimize in terms of features, reporting, integrations and pricing.
Supported Platforms
Google Optimize supports experiments for dynamic websites and single-page mobile apps only.
If you want to run split tests in mobile apps, you’ll have to do so via Firebase — Google’s app development platform. It also has a free tier but paid usage-based subscription kicks in after your product(s) reaches a certain usage threshold.
Google Optimize also doesn’t support CRO experiments for web or desktop applications, email campaigns or paid ad campaigns.Matomo A/B Testing, in contrast, allows you to run experiments in virtually every channel. We have three installation options — using JavaScript, server-side technology, or our mobile tracking SDK. These allow you to run split tests in any type of web or mobile app (including games), a desktop product, or on your website. Also, you can do different email marketing tests (e.g., compare subject line variants).
A/B Testing
A/B testing (split testing) is the core feature of both products. Marketers use A/B testing to determine which creative elements such as website microcopy, button placements and banner versions, resonate better with target audiences.
You can benchmark different versions against one another to determine which variation resonates more with users. Or you can test an A version against B, C, D and beyond. This is called A/B/n testing.
Both Matomo A/B testing and Google Optimize let you test either separate page elements or two completely different landing page designs, using redirect tests. You can show different variants to different user groups (aka apply targeting criteria). For example, activate tests only for certain device types, locations or types of on-site behaviour.
The advantage of Matomo is that we don’t limit the number of concurrent experiments you can run. With Google Optimize, you’re limited to 5 simultaneous experiments. Likewise,
Matomo lets you select an unlimited number of experiment objectives, whereas Google caps the maximum choice to 3 predefined options per experiment.
Objectives are criteria the underlying statistical model will use to determine the best-performing version. Typically, marketers use metrics such as page views, session duration, bounce rate or generated revenue as conversion goals.
Multivariate testing (MVT)
Multivariate testing (MVT) allows you to “pack” several A/B tests into one active experiment. In other words : You create a stack of variants to determine which combination drives the best marketing outcomes.
For example, an MVT experiment can include five versions of a web page, where each has a different slogan, product image, call-to-action, etc. Visitors are then served with a different variation. The tracking code collects data on their behaviours and desired outcomes (objectives) and reports the results.
MVT saves marketers time as it’s a great alternative to doing separate A/B tests for each variable. Both Matomo and Google Optimize support this feature. However, Google Optimize caps the number of possible combinations at 16, whereas Matomo has no limits.
Redirect Tests
Redirect tests, also known as split URL tests, allow you to serve two entirely different web page versions to users and compare their performance. This option comes in handy when you’re redesigning your website or want to test a localised page version in a new market.
Also, redirect tests are a great way to validate the performance of bottom-of-the-funnel (BoFU) pages as a checkout page (for eCommerce websites), a pricing page (for SaaS apps) or a contact/booking form (for a B2B service businesses).
You can do split URL tests with Google Optimize and Matomo A/B Testing.
Experiment Design
Google Optimize provides a visual editor for making simple page changes to your website (e.g., changing button colour or adding several headline variations). You can then preview the changes before publishing an experiment. For more complex experiments (e.g., testing different page block sequences), you’ll have to codify experiments using custom JavaScript, HTML and CSS.
In Matomo, all A/B tests are configured on the server-side (i.e., by editing your website’s raw HTML) or client-side via JavaScript. Afterwards, you use the Matomo interface to start or schedule an experiment, set objectives and view reports.
Experiment Configuration
Marketers know how complex customer journeys can be. Multiple factors — from location and device to time of the day and discount size — can impact your conversion rates. That’s why a great CRO app allows you to configure multiple tracking conditions.
Matomo A/B testing comes with granular controls. First of all, you can decide which percentage of total web visitors participate in any given experiment. By default, the number is set to 100%, but you can change it to any other option.
Likewise, you can change which percentage of traffic each variant gets in an experiment. For example, your original version can get 30% of traffic, while options A and B receive 40% each. We also allow users to specify custom parameters for experiment participation. You can only show your variants to people in specific geo-location or returning visitors only.
Finally, you can select any type of meaningful objective to evaluate each variant’s performance. With Matomo, you can either use standard website analytics metrics (e.g., total page views, bounce rate, CTR, visit direction, etc) or custom goals (e.g., form click, asset download, eCommerce order, etc).
In other words : You’re in charge of deciding on your campaign targeting criteria, duration and evaluation objectives.
A free Google Optimize account comes with three main types of user targeting options :
- Geo-targeting at city, region, metro and country levels.
- Technology targeting by browser, OS or device type, first-party cookie, etc.
- Behavioural targeting based on metrics like “time since first arrival” and “page referrer” (referral traffic source).
Users can also configure other types of tracking scenarios (for example to only serve tests to signed-in users), using condition-based rules.
Reporting
Both Matomo and Google Optimize use different statistical models to evaluate which variation performs best.
Matomo relies on statistical hypothesis testing, which we use to count unique visitors and report on conversion rates. We analyse all user data (with no data sampling applied), meaning you get accurate reporting, based on first-hand data, rather than deductions. For that reason, we ask users to avoid drawing conclusions before their experiment participation numbers reach a statistically significant result. Typically, we recommend running an experiment for at least several business cycles to get a comprehensive report.
Google Optimize, in turn, uses Bayesian inference — a statistical method, which relies on a random sample of users to compare the performance rates of each creative against one another. While a Bayesian model generates CRO reports faster and at a bigger scale, it’s based on inferences.
Model developers need to have the necessary skills to translate subjective prior beliefs about the probability of a certain event into a mathematical formula. Since Google Optimize is a proprietary tool, you cannot audit the underlying model design and verify its accuracy. In other words, you trust that it was created with the right judgement.
In comparison, Matomo started as an open-source project, and our source code can be audited independently by anyone at any time.
Another reporting difference to mind is the reporting delays. Matomo Cloud generates A/B reports within 6 hours and in only 1 hour for Matomo On-Premise. Google Optimize, in turn, requires 12 hours from the first experiment setup to start reporting on results.
When you configure a test experiment and want to quickly verify that everything is set up correctly, this can be an inconvenience.
User Privacy & GDPR Compliance
Google Optimize works in conjunction with Google Analytics, which isn’t GDPR compliant.
For all website traffic from the EU, you’re therefore obliged to show a cookie consent banner. The kicker, however, is that you can only show an Optimize experiment after the user gives consent to tracking. If the user doesn’t, they will only see an original page version. Considering that almost 40% of global consumers reject cookie consent banners, this can significantly affect your results.
This renders Google Optimize mostly useless in the EU since it would only allow you to run tests with a fraction ( 60%) of EU traffic — and even less if you apply any extra targeting criteria.
In comparison, Matomo is fully GDPR compliant. Therefore, our users are legally exempt from displaying cookie-consent banners in most EU markets (with Germany and the UK being an exception). Since Matomo A/B testing is part of Matomo web analytics, you don’t have to worry about GDPR compliance or breaches in user privacy.
Digital Experience Intelligence
You can get comprehensive statistical data on variants’ performance with Google Optimize. But you don’t get further insights on why some tests are more successful than others.
Matomo enables you to collect more insights with two extra features :
- User session recordings : Monitor how users behave on different page versions. Observe clicks, mouse movements, scrolls, page changes, and form interactions to better understand the users’ cumulative digital experience.
- Heatmaps : Determine which elements attract the most users’ attention to fine-tune your split tests. With a standard CRO tool, you only assume that a certain page element does matter for most users. A heatmap can help you determine for sure.
Both of these features are bundled into your Matomo Cloud subscription.
Integrations
Both Matomo and Google Optimize integrate with multiple other tools.
Google Optimize has native integrations with other products in the marketing family — GA, Google Ads, Google Tag Manager, Google BigQuery, Accelerated Mobile Pages (AMP), and Firebase. Separately, other popular marketing apps have created custom connectors for integrating Google Optimize data.
Matomo A/B Testing, in turn, can be combined with other web analytics and CRO features such as Funnels, Multi-Channel Attribution, Tag Manager, Form Analytics, Heatmaps, Session Recording, and more !
You can also conveniently export your website analytics or CRO data using Matomo Analytics API to analyse it in another app.
Pricing
Google Optimize is a free tool but has usage caps. If you want to schedule more than 5 concurrent experiments or test more than 16 variants at once, you’ll have to upgrade to Optimize 360. Optimize 360 prices aren’t listed publicly but are said to be closer to six figures per year.
Matomo A/B Testing is available with every Cloud subscription (starting from €19) and Matomo On-Premise users can also get A/B Testing as a plugin (starting from €199/year). In each case, there are no caps or data limits.
Google Optimize vs Matomo A/B Testing : Comparison Table
Features/capabilities Google Optimize Matomo A/B test Supported channels Web Web, mobile, email, digital campaigns A/B testing Multivariate testing (MVT) Split URL tests Web analytics integration Native with UA/GA4 Native with Matomo
You can also migrate historical UA (GA3) data to MatomoAudience segmentation Basic Advanced Geo-targeting Technology targeting Behavioural targeting Basic Advanced Reporting model Bayesian analysis Statistical hypothesis testing Report availability Within 12 hours after setup 6 hours for Matomo Cloud
1 hour for Matomo On-PremiseHeatmaps
Included with Matomo CloudSession recordings
Included with Matomo CloudGDPR compliance Support Self-help desk on a free tier Self-help guides, user forum, email Price Free limited tier From €19 for Cloud subscription
From €199/year as plugin for On-PremiseFinal Thoughts : Who Benefits the Most From an A/B Testing Tool ?
Split testing is an excellent method for validating various assumptions about your target customers.
With A/B testing tools you get a data-backed answer to research hypotheses such as “How different pricing affects purchases ?”, “What contact button placement generates more clicks ?”, “Which registration form performs best with new app subscribers ?” and more.
Such insights can be game-changing when you’re trying to improve your demand-generation efforts or conversion rates at the BoFu stage. But to get meaningful results from CRO tests, you need to select measurable, representative objectives.
For example, split testing different pricing strategies for low-priced, frequently purchased products makes sense as you can run an experiment for a couple of weeks to get a statistically relevant sample.
But if you’re in a B2B SaaS product, where the average sales cycle takes weeks (or months) to finalise and things like “time-sensitive discounts” or “one-time promos” don’t really work, getting adequate CRO data will be harder.
To see tangible results from CRO, you’ll need to spend more time on test ideation than implementation. Your team needs to figure out : which elements to test, in what order, and why.
Effective CRO tests are designed for a specific part of the funnel and assume that you’re capable of effectively identifying and tracking conversions (goals) at the selected stage. This alone can be a complex task since not all customer journeys are alike. For SaaS websites, using a goal like “free trial account registration” can be a good starting point.
A good test also produces a meaningful difference between the proposed variant and the original version. As Nima Yassini, Partner at Deloitte Digital, rightfully argues :
“I see people experimenting with the goal of creating an uplift. There’s nothing wrong with that, but if you’re only looking to get wins you will be crushed when the first few tests fail. The industry average says that only one in five to seven tests win, so you need to be prepared to lose most of the time”.
In many cases, CRO tests don’t provide the data you expected (e.g., people equally click the blue and green buttons). In this case, you need to start building your hypothesis from scratch.
At the same time, it’s easy to get caught up in optimising for “vanity metrics” — such that look good in the report, but don’t quite match your marketing objectives. For example, better email headline variations can improve your email open rates. But if users don’t proceed to engage with the email content (e.g. click-through to your website or use a provided discount code), your efforts are still falling short.
That’s why developing a baseline strategy is important before committing to an A/B testing tool. Google Optimize appealed to many users because it’s free and allows you to test your split test strategy cost-effectively.
With its upcoming depreciation, many marketers are very committed to a more expensive A/B tool (especially when they’re not fully sure about their CRO strategy and its results).
Matomo A/B testing is a cost-effective, GDPR-compliant alternative to Google Optimize with a low learning curve and extra competitive features.
Discover if Matomo A/B Testing is the ideal Google Optimize alternative for your organization with our free 21-day trial. No credit card required.
-
How to Choose the Optimal Multi-Touch Attribution Model for Your Organisation
13 mars 2023, par Erin — Analytics TipsIf you struggle to connect the dots on your customer journeys, you are researching the correct solution.
Multi-channel attribution models allow you to better understand the users’ paths to conversion and identify key channels and marketing assets that assist them.
That said, each attribution model has inherent limitations, which make the selection process even harder.
This guide explains how to choose the optimal multi-touch attribution model. We cover the pros and cons of popular attribution models, main evaluation criteria and how-to instructions for model implementation.
Pros and Cons of Different Attribution Models
First Interaction
First Interaction attribution model (also known as first touch) assigns full credit to the conversion to the first channel, which brought in a lead. However, it doesn’t report other interactions the visitor had before converting.
Marketers, who are primarily focused on demand generation and user acquisition, find the first touch attribution model useful to evaluate and optimise top-of-the-funnel (ToFU).
Pros
- Reflects the start of the customer journey
- Shows channels that bring in the best-qualified leads
- Helps track brand awareness campaigns
Cons
- Ignores the impact of later interactions at the middle and bottom of the funnel
- Doesn’t provide a full picture of users’ decision-making process
Last Interaction
Last Interaction attribution model (also known as last touch) shifts the entire credit allocation to the last channel before conversion. But it doesn’t account for the contribution of all other channels.
If your focus is conversion optimization, the last-touch model helps you determine which channels, assets or campaigns seal the deal for the prospect.
Pros
- Reports bottom-of-the-funnel events
- Requires minimal data and configurations
- Helps estimate cost-per-lead or cost-per-acquisition
Cons
- No visibility into assisted conversions and prior visitor interactions
- Overemphasise the importance of the last channel (which can often be direct traffic)
Last Non-Direct Interaction
Last Non-Direct attribution excludes direct traffic from the calculation and assigns the full conversion credit to the preceding channel. For example, a paid ad will receive 100% of credit for conversion if a visitor goes directly to your website to buy a product.
Last Non-Direct attribution provides greater clarity into the bottom-of-the-funnel (BoFU). events. Yet, it still under-reports the role other channels played in conversion.
Pros
- Improved channel visibility, compared to Last-Touch
- Avoids over-valuing direct visits
- Reports on lead-generation efforts
Cons
- Doesn’t work for account-based marketing (ABM)
- Devalues the quality over quantity of leads
Linear Model
Linear attribution model assigns equal credit for a conversion to all tracked touchpoints, regardless of their impact on the visitor’s decision to convert.
It helps you understand the full conversion path. But this model doesn’t distinguish between the importance of lead generation activities versus nurturing touches.
Pros
- Focuses on all touch points associated with a conversion
- Reflects more steps in the customer journey
- Helps analyse longer sales cycles
Cons
- Doesn’t accurately reflect the varying roles of each touchpoint
- Can dilute the credit if too many touchpoints are involved
Time Decay Model
Time decay models assumes that the closer a touchpoint is to the conversion, the greater its influence. Pre-conversion touchpoints get the highest credit, while the first ones are ranked lower (5%-5%-10%-15%-25%-30%).
This model better reflects real-life customer journeys. However, it devalues the impact of brand awareness and demand-generation campaigns.
Pros
- Helps track longer sales cycles and reports on each touchpoint involved
- Allows customising the half-life of decay to improve reporting
- Promotes conversion optimization at BoFu stages
Cons
- Can prompt marketers to curtail ToFU spending, which would translate to fewer qualified leads at lower stages
- Doesn’t reflect highly-influential events at earlier stages (e.g., a product demo request or free account registration, which didn’t immediately lead to conversion)
Position-Based Model
Position-Based attribution model (also known as the U-shaped model) allocates the biggest credit to the first and the last interaction (40% each). Then distributes the remaining 20% across other touches.
For many marketers, that’s the preferred multi-touch attribution model as it allows optimising both ToFU and BoFU channels.
Pros
- Helps establish the main channels for lead generation and conversion
- Adds extra layers of visibility, compared to first- and last-touch attribution models
- Promotes budget allocation toward the most strategic touchpoints
Cons
- Diminishes the importance of lead nurturing activities as more credit gets assigned to demand-gen and conversion-generation channels
- Limited flexibility since it always assigns a fixed amount of credit to the first and last touchpoints, and the remaining credit is divided evenly among the other touchpoints
How to Choose the Right Multi-Touch Attribution Model For Your Business
If you’re deciding which attribution model is best for your business, prepare for a heated discussion. Each one has its trade-offs as it emphasises or devalues the role of different channels and marketing activities.
To reach a consensus, the best strategy is to evaluate each model against three criteria : Your marketing objectives, sales cycle length and data availability.
Marketing Objectives
Businesses generate revenue in many ways : Through direct sales, subscriptions, referral fees, licensing agreements, one-off or retainer services. Or any combination of these activities.
In each case, your marketing strategy will look different. For example, SaaS and direct-to-consumer (DTC) eCommerce brands have to maximise both demand generation and conversion rates. In contrast, a B2B cybersecurity consulting firm is more interested in attracting qualified leads (as opposed to any type of traffic) and progressively nurturing them towards a big-ticket purchase.
When selecting a multi-touch attribution model, prioritise your objectives first. Create a simple scoreboard, where your team ranks various channels and campaign types you rely on to close sales.
Alternatively, you can survey your customers to learn how they first heard about your company and what eventually triggered their conversion. Having data from both sides can help you cross-validate your assumptions and eliminate some biases.
Then consider which model would best reflect the role and importance of different channels in your sales cycle. Speaking of which….
Sales Cycle Length
As shoppers, we spend less time deciding on a new toothpaste brand versus contemplating a new IT system purchase. Factors like industry, business model (B2C, DTC, B2B, B2BC), and deal size determine the average cycle length in your industry.
Statistically, low-ticket B2C sales can happen within just several interactions. The average B2B decision-making process can have over 15 steps, spread over several months.
That’s why not all multi-touch attribution models work equally well for each business. Time-decay suits better B2B companies, while B2C usually go for position-based or linear attribution.
Data Availability
Businesses struggle with multi-touch attribution model implementation due to incomplete analytics data.
Our web analytics tool captures more data than Google Analytics. That’s because we rely on a privacy-focused tracking mechanism, which allows you to collect analytics without showing a cookie consent banner in markets outside of Germany and the UK.
Cookie consent banners are mandatory with Google Analytics. Yet, almost 40% of global consumers reject it. This results in gaps in your analytics and subsequent inconsistencies in multi-touch attribution reports. With Matomo, you can compliantly collect more data for accurate reporting.
Some companies also struggle to connect collected insights to individual shoppers. With Matomo, you can cross-attribute users across browning sessions, using our visitors’ tracking feature.
When you already know a user’s identifier (e.g., full name or email address), you can track their on-site behaviours over time to better understand how they interact with your content and complete their purchases. Quick disclaimer, though, visitors’ tracking may not be considered compliant with certain data privacy laws. Please consult with a local authority if you have doubts.
How to Implement Multi-Touch Attribution
Multi-touch attribution modelling implementation is like a “seek and find” game. You have to identify all significant touchpoints in your customers’ journeys. And sometimes also brainstorm new ways to uncover the missing parts. Then figure out the best way to track users’ actions at those stages (aka do conversion and events tracking).
Here’s a step-by-step walkthrough to help you get started.
Select a Multi-Touch Attribution Tool
The global marketing attribution software is worth $3.1 billion. Meaning there are plenty of tools, differing in terms of accuracy, sophistication and price.
To make the right call prioritise five factors :
- Available models : Look for a solution that offers multiple options and allows you to experiment with different modelling techniques or develop custom models.
- Implementation complexity : Some providers offer advanced data modelling tools for creating custom multi-touch attribution models, but offer few out-of-the-box modelling options.
- Accuracy : Check if the shortlisted tool collects the type of data you need. Prioritise providers who are less dependent on third-party cookies and allow you to identify repeat users.
- Your marketing stack : Some marketing attribution tools come with useful add-ons such as tag manager, heatmaps, form analytics, user session recordings and A/B testing tools. This means you can collect more data for multi-channel modelling with them instead of investing in extra software.
- Compliance : Ensure that the selected multi-attribution analytics software wouldn’t put you at risk of GDPR non-compliance when it comes to user privacy and consent to tracking/analysis.
Finally, evaluate the adoption costs. Free multi-channel analytics tools come with data quality and consistency trade-offs. Premium attribution tools may have “hidden” licensing costs and bill you for extra data integrations.
Look for a tool that offers a good price-to-value ratio (i.e., one that offers extra perks for a transparent price).
Set Up Proper Data Collection
Multi-touch attribution requires ample user data. To collect the right type of insights you need to set up :
- Website analytics : Ensure that you have all tracking codes installed (and working correctly !) to capture pageviews, on-site actions, referral sources and other data points around what users do on page.
- Tags : Add tracking parameters to monitor different referral channels (e.g., “facebook”), campaign types (e.g., ”final-sale”), and creative assets (e.g., “banner-1”). Tags help you get a clearer picture of different touchpoints.
- Integrations : To better identify on-site users and track their actions, you can also populate your attribution tool with data from your other tools – CRM system, A/B testing app, etc.
Finally, think about the ideal lookback window — a bounded time frame you’ll use to calculate conversions. For example, Matomo has a default windows of 7, 30 or 90 days. But you can configure a custom period to better reflect your average sales cycle. For instance, if you’re selling makeup, a shorter window could yield better results. But if you’re selling CRM software for the manufacturing industry, consider extending it.
Configure Goals and Events
Goals indicate your main marketing objectives — more traffic, conversions and sales. In web analytics tools, you can measure these by tracking specific user behaviours.
For example : If your goal is lead generation, you can track :
- Newsletter sign ups
- Product demo requests
- Gated content downloads
- Free trial account registration
- Contact form submission
- On-site call bookings
In each case, you can set up a unique tag to monitor these types of requests. Then analyse conversion rates — the percentage of users who have successfully completed the action.
To collect sufficient data for multi-channel attribution modelling, set up Goal Tracking for different types of touchpoints (MoFU & BoFU) and asset types (contact forms, downloadable assets, etc).
Your next task is to figure out how users interact with different on-site assets. That’s when Event Tracking comes in handy.
Event Tracking reports notify you about specific actions users take on your website. With Matomo Event Tracking, you can monitor where people click on your website, on which pages they click newsletter subscription links, or when they try to interact with static content elements (e.g., a non-clickable banner).
Using in-depth user behavioural reports, you can better understand which assets play a key role in the average customer journey. Using this data, you can localise “leaks” in your sales funnel and fix them to increase conversion rates.
Test and Validated the Selected Model
A common challenge of multi-channel attribution modelling is determining the correct correlation and causality between exposure to touchpoints and purchases.
For example, a user who bought a discounted product from a Facebook ad would act differently than someone who purchased a full-priced product via a newsletter link. Their rate of pre- and post-sales exposure will also differ a lot — and your attribution model may not always accurately capture that.
That’s why you have to continuously test and tweak the selected model type. The best approach for that is lift analysis.
Lift analysis means comparing how your key metrics (e.g., revenue or conversion rates) change among users who were exposed to a certain campaign versus a control group.
In the case of multi-touch attribution modelling, you have to monitor how your metrics change after you’ve acted on the model recommendations (e.g., invested more in a well-performing referral channel or tried a new brand awareness Twitter ad). Compare the before and after ROI. If you see a positive dynamic, your model works great.
The downside of this approach is that you have to invest a lot upfront. But if your goal is to create a trustworthy attribution model, the best way to validate is to act on its suggestions and then test them against past results.
Conclusion
A multi-touch attribution model helps you measure the impact of different channels, campaign types, and marketing assets on metrics that matter — conversion rate, sales volumes and ROI.
Using this data, you can invest budgets into the best-performing channels and confidently experiment with new campaign types.
As a Matomo user, you also get to do so without breaching customers’ privacy or compromising on analytics accuracy.
Start using accurate multi-channel attribution in Matomo. Get your free 21-day trial now. No credit card required.
-
What is Multi-Touch Attribution ? (And How To Get Started)
2 février 2023, par Erin — Analytics TipsGood marketing thrives on data. Or more precisely — its interpretation. Using modern analytics software, we can determine which marketing actions steer prospects towards the desired action (a conversion event).
An attribution model in marketing is a set of rules that determine how various marketing tactics and channels impact the visitor’s progress towards a conversion.
Yet, as customer journeys become more complicated and involve multiple “touches”, standard marketing reports no longer tell the full picture.
That’s when multi-touch attribution analysis comes to the fore.
What is Multi-Touch Attribution ?
Multi-touch attribution (also known as multi-channel attribution or cross-channel attribution) measures the impact of all touchpoints on the consumer journey on conversion.
Unlike single-touch reporting, multi-touch attribution models give credit to each marketing element — a social media ad, an on-site banner, an email link click, etc. By seeing impacts from every touchpoint and channel, marketers can avoid false assumptions or subpar budget allocations.
To better understand the concept, let’s interpret the same customer journey using a standard single-touch report vs a multi-touch attribution model.
Picture this : Jammie is shopping around for a privacy-centred web analytics solution. She saw a recommendation on Twitter and ended up on the Matomo website. After browsing a few product pages and checking comparisons with other web analytics tools, she signs up for a webinar. One week after attending, Jammie is convinced that Matomo is the right tool for her business and goes directly to the Matomo website a starts a free trial.
- A standard single-touch report would attribute 100% of the conversion to direct traffic, which doesn’t give an accurate view of the multiple touchpoints that led Jammie to start a free trial.
- A multi-channel attribution report would showcase all the channels involved in the free trial conversion — social media, website content, the webinar, and then the direct traffic source.
In other words : Multi-touch attribution helps you understand how prospects move through the sales funnel and which elements tinder them towards the desired outcome.
Types of Attribution Models
As marketers, we know that multiple factors play into a conversion — channel type, timing, user’s stage on the buyer journey and so on. Various attribution models exist to reflect this variability.
First Interaction attribution model (otherwise known as first touch) gives all credit for the conversion to the first channel (for example — a referral link) and doesn’t report on all the other interactions a user had with your company (e.g., clicked a newsletter link, engaged with a landing page, or browsed the blog campaign).
First-touch helps optimise the top of your funnel and establish which channels bring the best leads. However, it doesn’t offer any insight into other factors that persuaded a user to convert.
Last Interaction attribution model (also known as last touch) allocates 100% credit to the last channel before conversion — be it direct traffic, paid ad, or an internal product page.
The data is useful for optimising the bottom-of-the-funnel (BoFU) elements. But you have no visibility into assisted conversions — interactions a user had prior to conversion.
Last Non-Direct attribution model model excludes direct traffic and assigns 100% credit for a conversion to the last channel a user interacted with before converting. For instance, a social media post will receive 100% of credit if a shopper buys a product three days later.
This model is more telling about the other channels, involved in the sales process. Yet, you’re seeing only one step backwards, which may not be sufficient for companies with longer sales cycles.
Linear attribution model distributes an equal credit for a conversion between all tracked touchpoints.
For instance, with a four touchpoint conversion (e.g., an organic visit, then a direct visit, then a social visit, then a visit and conversion from an ad campaign) each touchpoint would receive 25% credit for that single conversion.
This is the simplest multi-channel attribution modelling technique many tools support. The nuance is that linear models don’t reflect the true impact of various events. After all, a paid ad that introduced your brand to the shopper and a time-sensitive discount code at the checkout page probably did more than the blog content a shopper browsed in between.
Position Based attribution model allocates a 40% credit to the first and the last touchpoints and then spreads the remaining 20% across the touchpoints between the first and last.
This attribution model comes in handy for optimising conversions across the top and the bottom of the funnel. But it doesn’t provide much insight into the middle, which can skew your decision-making. For instance, you may overlook cases when a shopper landed via a social media post, then was re-engaged via email, and proceeded to checkout after an organic visit. Without email marketing, that sale may not have happened.
Time decay attribution model adjusts the credit, based on the timing of the interactions. Touchpoints that preceded the conversion get the highest score, while the first ones get less weight (e.g., 5%-5%-10%-15%-25%-30%).
This multi-channel attribution model works great for tracking the bottom of the funnel, but it underestimates the impact of brand awareness campaigns or assisted conversions at mid-stage.
Why Use Multi-Touch Attribution Modelling
Multi-touch attribution provides you with the full picture of your funnel. With accurate data across all touchpoints, you can employ targeted conversion rate optimisation (CRO) strategies to maximise the impact of each campaign.
Most marketers and analysts prefer using multi-touch attribution modelling — and for some good reasons.
Issues multi-touch attribution solves
- Funnel visibility. Understand which tactics play an important role at the top, middle and bottom of your funnel, instead of second-guessing what’s working or not.
- Budget allocations. Spend money on channels and tactics that bring a positive return on investment (ROI).
- Assisted conversions. Learn how different elements and touchpoints cumulatively contribute to the ultimate goal — a conversion event — to optimise accordingly.
- Channel segmentation. Determine which assets drive the most qualified and engaged leads to replicate them at scale.
- Campaign benchmarking. Compare how different marketing activities from affiliate marketing to social media perform against the same metrics.
How To Get Started With Multi-Touch Attribution
To make multi-touch attribution part of your analytics setup, follow the next steps :
1. Define Your Marketing Objectives
Multi-touch attribution helps you better understand what led people to convert on your site. But to capture that, you need to first map the standard purchase journeys, which include a series of touchpoints — instances, when a prospect forms an opinion about your business.
Touchpoints include :
- On-site interactions (e.g., reading a blog post, browsing product pages, using an on-site calculator, etc.)
- Off-site interactions (e.g., reading a review, clicking a social media link, interacting with an ad, etc.)
Combined these interactions make up your sales funnel — a designated path you’ve set up to lead people toward the desired action (aka a conversion).
Depending on your business model, you can count any of the following as a conversion :
- Purchase
- Account registration
- Free trial request
- Contact form submission
- Online reservation
- Demo call request
- Newsletter subscription
So your first task is to create a set of conversion objectives for your business and add them as Goals or Conversions in your web analytics solution. Then brainstorm how various touchpoints contribute to these objectives.
Web analytics tools with multi-channel attribution, like Matomo, allow you to obtain an extra dimension of data on touchpoints via Tracked Events. Using Event Tracking, you can analyse how many people started doing a desired action (e.g., typing details into the form) but never completed the task. This way you can quickly identify “leaking” touchpoints in your funnel and fix them.
2. Select an Attribution Model
Multi-attribution models have inherent tradeoffs. Linear attribution model doesn’t always represent the role and importance of each channel. Position-based attribution model emphasises the role of the last and first channel while diminishing the importance of assisted conversions. Time-decay model, on the contrary, downplays the role awareness-related campaigns played.
To select the right attribution model for your business consider your objectives. Is it more important for you to understand your best top of funnel channels to optimise customer acquisition costs (CAC) ? Or would you rather maximise your on-site conversion rates ?
Your industry and the average cycle length should also guide your choice. Position-based models can work best for eCommerce and SaaS businesses where both CAC and on-site conversion rates play an important role. Manufacturing companies or educational services providers, on the contrary, will benefit more from a time-decay model as it better represents the lengthy sales cycles.
3. Collect and Organise Data From All Touchpoints
Multi-touch attribution models are based on available funnel data. So to get started, you will need to determine which data sources you have and how to best leverage them for attribution modelling.
Types of data you should collect :
- General web analytics data : Insights on visitors’ on-site actions — visited pages, clicked links, form submissions and more.
- Goals (Conversions) : Reports on successful conversions across different types of assets.
- Behavioural user data : Some tools also offer advanced features such as heatmaps, session recording and A/B tests. These too provide ample data into user behaviours, which you can use to map and optimise various touchpoints.
You can also implement extra tracking, for instance for contact form submissions, live chat contacts or email marketing campaigns to identify repeat users in your system. Just remember to stay on the good side of data protection laws and respect your visitors’ privacy.
Separately, you can obtain top-of-the-funnel data by analysing referral traffic sources (channel, campaign type, used keyword, etc). A Tag Manager comes in handy as it allows you to zoom in on particular assets (e.g., a newsletter, an affiliate, a social campaign, etc).
Combined, these data points can be parsed by an app, supporting multi-touch attribution (or a custom algorithm) and reported back to you as specific findings.
Sounds easy, right ? Well, the devil is in the details. Getting ample, accurate data for multi-touch attribution modelling isn’t easy.
Marketing analytics has an accuracy problem, mainly for two reasons :
- Cookie consent banner rejection
- Data sampling application
Please note that we are not able to provide legal advice, so it’s important that you consult with your own DPO to ensure compliance with all relevant laws and regulations.
If you’re collecting web analytics in the EU, you know that showing a cookie consent banner is a GDPR must-do. But many consumers don’t often rush to accept cookie consent banners. The average consent rate for cookies in 2021 stood at 54% in Italy, 45% in France, and 44% in Germany. The consent rates are likely lower in 2023, as Google was forced to roll out a “reject all” button for cookie tracking in Europe, while privacy organisations lodge complaints against individual businesses for deceptive banners.
For marketers, cookie rejection means substantial gaps in analytics data. The good news is that you can fill in those gaps by using a privacy-centred web analytics tool like Matomo.
Matomo takes extra safeguards to protect user privacy and supports fully cookieless tracking. Because of that, Matomo is legally exempt from tracking consent in France. Plus, you can configure to use our analytics tool without consent banners in other markets outside of Germany and the UK. This way you get to retain the data you need for audience modelling without breaching any privacy regulations.
Data sampling application partially stems from the above. When a web analytics or multi-channel attribution tool cannot secure first-hand data, the “guessing game” begins. Google Analytics, as well as other tools, often rely on synthetic AI-generated data to fill in the reporting gaps. Respectively, your multi-attribution model doesn’t depict the real state of affairs. Instead, it shows AI-produced guesstimates of what transpired whenever not enough real-world evidence is available.
4. Evaluate and Select an Attribution Tool
Google Analytics (GA) offers several multi-touch attribution models for free (linear, time-decay and position-based). The disadvantage of GA multi-touch attribution is its lower accuracy due to cookie rejection and data sampling application.
At the same time, you cannot create custom credit allocations for the proposed models, unless you have the paid version of GA, Google Analytics 360. This version of GA comes with a custom Attribution Modeling Tool (AMT). The price tag, however, starts at USD $50,000 per year.
Matomo Cloud offers multi-channel conversion attribution as a feature and it is available as a plug-in on the marketplace for Matomo On-Premise. We support linear, position-based, first-interaction, last-interaction, last non-direct and time-decay modelling, based fully on first-hand data. You also get more precise insights because cookie consent isn’t an issue with us.
Most multi-channel attribution tools, like Google Analytics and Matomo, provide out-of-the-box multi-touch attribution models. But other tools, like Matomo On-Premise, also provide full access to raw data so you can develop your own multi-touch attribution models and do custom attribution analysis. The ability to create custom attribution analysis is particularly beneficial for data analysts or organisations with complex and unique buyer journeys.
Conclusion
Ultimately, multi-channel attribution gives marketers greater visibility into the customer journey. By analysing multiple touchpoints, you can establish how various marketing efforts contribute to conversions. Then use this information to inform your promotional strategy, budget allocations and CRO efforts.
The key to benefiting the most from multi-touch attribution is accurate data. If your analytics solution isn’t telling you the full story, your multi-touch model won’t either.
Collect accurate visitor data for multi-touch attribution modelling with Matomo. Start your free 21-day trial now.