
Recherche avancée
Autres articles (94)
-
Changer son thème graphique
22 février 2011, parLe thème graphique ne touche pas à la disposition à proprement dite des éléments dans la page. Il ne fait que modifier l’apparence des éléments.
Le placement peut être modifié effectivement, mais cette modification n’est que visuelle et non pas au niveau de la représentation sémantique de la page.
Modifier le thème graphique utilisé
Pour modifier le thème graphique utilisé, il est nécessaire que le plugin zen-garden soit activé sur le site.
Il suffit ensuite de se rendre dans l’espace de configuration du (...) -
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
-
Gestion de la ferme
2 mars 2010, parLa ferme est gérée dans son ensemble par des "super admins".
Certains réglages peuvent être fais afin de réguler les besoins des différents canaux.
Dans un premier temps il utilise le plugin "Gestion de mutualisation"
Sur d’autres sites (6980)
-
Revision 30797 : On passe en version 0.6 avec tout le code revu et plus ou moins corrigé
10 août 2009, par kent1@… — LogOn passe en version 0.6 avec tout le code revu et plus ou moins corrigé
-
Further Dreamcast Hacking
3 février 2011, par Multimedia Mike — Sega DreamcastI’m still haunted by Sega Dreamcast programming, specifically the fact that I used to be able to execute custom programs on the thing (roughly 8-10 years ago) and now I cannot. I’m going to compose a post to describe my current adventures on this front. There are 3 approaches I have been using : Raw, Kallistios, and the almighty Linux.
Raw
What I refer to as "raw" is an assortment of programs that lived in a small number of source files (sometimes just one ASM file) and could be compiled with the most basic SH-4 toolchain. The advantage here is that there aren’t many moving parts and not many things that can possibly go wrong, so it provides a good functional baseline.One of the original Dreamcast hackers was Marcus Comstedt, who still has his original DC material hosted at the reasonably easy-to-remember URL mc.pp.se/dc. I can get some of these simple demos to work, but not others.
I also successfully assembled and ran a pair of 256-byte (!!) demos from this old DC scene page.
KallistiOS
KallistiOS (or just KOS) was a real-time OS developed for the DC and was popular among the DC homebrew community. All the programming I did back in the day was based around KOS. Now I can’t get any of it to work. More specifically, KOS can’t seem to make it past a certain point in its system initialization.The Linux Option
I was never that excited about running Linux on my Dreamcast. For some hackers, running Linux on a given piece of consumer electronics is the highest attainable goal. Back in the day, I looked at it from a much more pragmatic perspective— I didn’t see much use in running Linux on the DC, not as much as running KOS which was developed to be a much more appropriate fit.However, I was able to burn a CD-R of an old binary image of Linux 2.4.5 compiled for the Dreamcast and boot it some months ago. So I at least have a feeling that this should work. I have never cross-compiled a kernel of my own (though I have compiled many, many x86 kernels in my time, so I’m not a total n00b in this regard). I figured this might be a good time to start.
The first item that worries me is getting a functional cross-compiling toolchain. Fortunately, a little digging in the Linux kernel documentation pointed me in the direction of a bunch of ready-made toolchains hosted at kernel.org. So I grabbed one of the SH toolchains (gcc-4.3.3-nolibc) and got rolling.
I’m well familiar with the cycle of
'make menuconfig'
in order to pick configuration options, and then'make'
to build a kernel (or usually'make zImage'
or'make bzImage'
to create compressed images). For cross compiling, the primary difference seems to be editing the root Makefile in the Linux source code tree (I’m using 2.6.37, the latest stable as of this writing) and setting a value for the CROSS_COMPILE variable. Then, run'make menuconfig'
followed by'make'
as normal.The Linux 2.6 series is supposed to support a range of Renesas (formerly Hitachi) SH processors and board configurations. This includes reasonable defaults for the Sega Dreamcast hardware. I got it all compiling except for a series of .S files. Linus Torvalds once helped me debug a program I work on so I thought I’d see if there was something I could help debug here.
The first issue was with ASM statements of a form similar to :
mov #0xffffffe0, r1
Now, the DC’s SH-4 is a RISC CPU. A lot of RISC architectures adopt a fixed instruction size of 32 bits. You can’t encode an entire 32-bit immediate value inside of a 32-bit instruction (there would be no room for the instruction encoding). Further, the SH series encoded instructions with a mere 16 bits. The move immediate data instruction only allows for an 8-bit, sign-extended value.
I decided that the above statement is equivalent to :
mov #-32, r1
I’ll give this statement the benefit of the doubt that it used to work with the gcc toolchain somewhere along the line. I assume that the assembler is supposed to know enough to substitute the first form with the second.
The next problem is that an ’sti’ instruction shows up in a number of spots. Using Intel x86 conventions, this is a "set interrupt flag" instruction (I remember that the 6502 CPU had the same instruction mnemonic, though its interrupt flag’s operation was opposite that of the x86). The SH-4 reference manual lists no ’sti’ instruction. When it gets to these lines, the assembler complains about immediate move instructions with too large data, like the instructions above. I’m guessing they must be macro’d to something else but I failed to find where. I commented out those lines for the time being. Probably not that smart, but I want to keep this moving for now.
So I got the code to compile into a kernel file called ’vmlinux’. I’ve seen this file many times before but never thought about how to get it to run directly. The process has usually been to compress it and send it over to lilo or grub for loading, as that is the job of the bootloader. I have never even wondered what format the vmlinux file takes until now. It seems that ’vmlinux’ is just a plain old ELF file :
$ file vmlinux vmlinux : ELF 32-bit LSB executable, Renesas SH, version 1 (SYSV), statically linked, not stripped
The ’dc-tool’ program that uploads executables to the waiting bootloader on the Dreamcast is perfectly cool accepting ELF files (and S-record files, and raw binary files). After a very lengthy upload process, execution fails (resets the system).
For the sake of comparison, I dusted off that Linux 2.4.5 bootable Dreamcast CD-ROM and directly uploaded the vmlinux file from that disc. That works just fine (until it’s time to go to the next loading phase, i.e., finding a filesystem). Possible issues here could include the commented ’sti’ instructions (could be that they aren’t just decoration). I’m also trying to understand the memory organization— perhaps the bootloader wants the ELF to be based at a different address. Or maybe the kernel and the bootloader don’t like each other in the first place— in this case, I need to study the bootable Linux CD-ROM to see how it’s done.
Optimism
Even though I’m meeting with rather marginal success, this is tremendously educational. I greatly enjoy these exercises if only for the deeper understanding they bring for the lowest-level system details. -
FFmpeg and Code Coverage Tools
21 août 2010, par Multimedia Mike — FATE Server, PythonCode coverage tools likely occupy the same niche as profiling tools : Tools that you’re supposed to use somewhere during the software engineering process but probably never quite get around to it, usually because you’re too busy adding features or fixing bugs. But there may come a day when you wish to learn how much of your code is actually being exercised in normal production use. For example, the team charged with continuously testing the FFmpeg project, would be curious to know how much code is being exercised, especially since many of the FATE test specs explicitly claim to be "exercising XYZ subsystem".
The primary GNU code coverage tool is called gcov and is probably already on your GNU-based development system. I set out to determine how much FFmpeg source code is exercised while running the full FATE suite. I ran into some problems when trying to use gcov on a project-wide scale. I spackled around those holes with some very ad-hoc solutions. I’m sure I was just overlooking some more obvious solutions about which you all will be happy to enlighten me.
Results
I’ve learned to cut to the chase earlier in blog posts (results first, methods second). With that, here are the results I produced from this experiment. This Google spreadsheet contains 3 sheets : The first contains code coverage stats for a bunch of FFmpeg C files sorted first by percent coverage (ascending), then by number of lines (descending), thus highlighting which files have the most uncovered code (ffserver.c currently tops that chart). The second sheet has files for which no stats were generated. The third sheet has "problems". These files were rejected by my ad-hoc script.Here’s a link to the data in CSV if you want to play with it yourself.
Using gcov with FFmpeg
To instrument a program for gcov analysis, compile and link the target program with the -fprofile-arcs and -ftest-coverage options. These need to be applied at both the compile and link stages, so in the case of FFmpeg, configure with :./configure \ —extra-cflags="-fprofile-arcs -ftest-coverage" \ —extra-ldflags="-fprofile-arcs -ftest-coverage"
The building process results in a bunch of .gcno files which pertain to code coverage. After running the program as normal, a bunch of .gcda files are generated. To get coverage statistics from these files, run
'gcov sourcefile.c'
. This will print some basic statistics as well as generate a corresponding .gcov file with more detailed information about exactly which lines have been executed, and how many times.Be advised that the source file must either live in the same directory from which gcov is invoked, or else the path to the source must be given to gcov via the
'-o, --object-directory'
option.Resetting Statistics
Statistics in the .gcda are cumulative. Should you wish to reset the statistics, doing this in the build directory should suffice :find . -name "*.gcda" | xargs rm -f
Getting Project-Wide Data
As mentioned, I had to get a little creative here to get a big picture of FFmpeg code coverage. After building FFmpeg with the code coverage options and running FATE,for file in `find . -name "*.c"` \ do \ echo "*****" $file \ gcov -o `dirname $file` `basename $file` \ done > ffmpeg-code-coverage.txt 2>&1
After that, I ran the ffmpeg-code-coverage.txt file through a custom Python script to print out the 3 CSV files that I later dumped into the Google Spreadsheet.
Further Work
I’m sure there are better ways to do this, and I’m sure you all will let me know what they are. But I have to get the ball rolling somehow.There’s also TestCocoon. I’d like to try that program and see if it addresses some of gcov’s shortcomings (assuming they are indeed shortcomings rather than oversights).
Source for script : process-gcov-slop.py
PYTHON :-
# !/usr/bin/python
-
-
import re
-
-
lines = open("ffmpeg-code-coverage.txt").read().splitlines()
-
no_coverage = ""
-
coverage = "filename, % covered, total lines\n"
-
problems = ""
-
-
stats_exp = re.compile(’Lines executed :(\d+\.\d+)% of (\d+)’)
-
for i in xrange(len(lines)) :
-
line = lines[i]
-
if line.startswith("***** ") :
-
filename = line[line.find(’./’)+2 :]
-
i += 1
-
if lines[i].find(":cannot open graph file") != -1 :
-
no_coverage += filename + ’\n’
-
else :
-
while lines[i].find(filename) == -1 and not lines[i].startswith("***** ") :
-
i += 1
-
try :
-
(percent, total_lines) = stats_exp.findall(lines[i+1])[0]
-
coverage += filename + ’, ’ + percent + ’, ’ + total_lines + ’\n’
-
except IndexError :
-
problems += filename + ’\n’
-
-
open("no_coverage.csv", ’w’).write(no_coverage)
-
open("coverage.csv", ’w’).write(coverage)
-
open("problems.csv", ’w’).write(problems)
-