Recherche avancée

Médias (91)

Autres articles (35)

  • L’espace de configuration de MediaSPIP

    29 novembre 2010, par

    L’espace de configuration de MediaSPIP est réservé aux administrateurs. Un lien de menu "administrer" est généralement affiché en haut de la page [1].
    Il permet de configurer finement votre site.
    La navigation de cet espace de configuration est divisé en trois parties : la configuration générale du site qui permet notamment de modifier : les informations principales concernant le site (...)

  • Support de tous types de médias

    10 avril 2011

    Contrairement à beaucoup de logiciels et autres plate-formes modernes de partage de documents, MediaSPIP a l’ambition de gérer un maximum de formats de documents différents qu’ils soient de type : images (png, gif, jpg, bmp et autres...) ; audio (MP3, Ogg, Wav et autres...) ; vidéo (Avi, MP4, Ogv, mpg, mov, wmv et autres...) ; contenu textuel, code ou autres (open office, microsoft office (tableur, présentation), web (html, css), LaTeX, Google Earth) (...)

  • Keeping control of your media in your hands

    13 avril 2011, par

    The vocabulary used on this site and around MediaSPIP in general, aims to avoid reference to Web 2.0 and the companies that profit from media-sharing.
    While using MediaSPIP, you are invited to avoid using words like "Brand", "Cloud" and "Market".
    MediaSPIP is designed to facilitate the sharing of creative media online, while allowing authors to retain complete control of their work.
    MediaSPIP aims to be accessible to as many people as possible and development is based on expanding the (...)

Sur d’autres sites (5736)

  • fftools/ffmpeg : add thread-aware transcode scheduling infrastructure

    18 mai 2023, par Anton Khirnov
    fftools/ffmpeg : add thread-aware transcode scheduling infrastructure
    

    See the comment block at the top of fftools/ffmpeg_sched.h for more
    details on what this scheduler is for.

    This commit adds the scheduling code itself, along with minimal
    integration with the rest of the program :
    * allocating and freeing the scheduler
    * passing it throughout the call stack in order to register the
    individual components (demuxers/decoders/filtergraphs/encoders/muxers)
    with the scheduler

    The scheduler is not actually used as of this commit, so it should not
    result in any change in behavior. That will change in future commits.

    • [DH] fftools/Makefile
    • [DH] fftools/ffmpeg.c
    • [DH] fftools/ffmpeg.h
    • [DH] fftools/ffmpeg_dec.c
    • [DH] fftools/ffmpeg_demux.c
    • [DH] fftools/ffmpeg_enc.c
    • [DH] fftools/ffmpeg_filter.c
    • [DH] fftools/ffmpeg_mux.c
    • [DH] fftools/ffmpeg_mux.h
    • [DH] fftools/ffmpeg_mux_init.c
    • [DH] fftools/ffmpeg_opt.c
    • [DH] fftools/ffmpeg_sched.c
    • [DH] fftools/ffmpeg_sched.h
  • fate : Avoid unnecessary pixel format conversions

    30 juin 2015, par Martin Storsjö
    fate : Avoid unnecessary pixel format conversions
    

    Most of the fate-dds-* and fate-txd-* tests already
    output into the same pixel format regardless of
    platform endianness, so there’s no need to force
    conversion to another format.

    This fixes the tests fate-txd-16bpp, fate-txd-odd,
    fate-dds-rgb16, fate-dds-rgb24 and fate-dds-xrgb on
    big endian, where the tests seem to fail due to issues
    with certain conversion codepaths in swscale.

    Those conversion codepaths should of course be fixed, but
    the individual decoder tests should use as little extra
    conversion steps as possible.

    Signed-off-by : Martin Storsjö <martin@martin.st>

    • [DH] tests/fate/image.mak
    • [DH] tests/fate/video.mak
    • [DH] tests/ref/fate/dds-rgb16
    • [DH] tests/ref/fate/dds-rgb24
    • [DH] tests/ref/fate/dds-uyvy
    • [DH] tests/ref/fate/dds-xbgr
    • [DH] tests/ref/fate/dds-y
    • [DH] tests/ref/fate/dds-ya
    • [DH] tests/ref/fate/dds-yuyv
    • [DH] tests/ref/fate/txd-16bpp
    • [DH] tests/ref/fate/txd-odd
  • aarch64 : vp9 : Implement NEON loop filters

    14 novembre 2016, par Martin Storsjö
    aarch64 : vp9 : Implement NEON loop filters
    

    This work is sponsored by, and copyright, Google.

    These are ported from the ARM version ; thanks to the larger
    amount of registers available, we can do the loop filters with
    16 pixels at a time. The implementation is fully templated, with
    a single macro which can generate versions for both 8 and
    16 pixels wide, for both 4, 8 and 16 pixels loop filters
    (and the 4/8 mixed versions as well).

    For the 8 pixel wide versions, it is pretty close in speed (the
    v_4_8 and v_8_8 filters are the best examples of this ; the h_4_8
    and h_8_8 filters seem to get some gain in the load/transpose/store
    part). For the 16 pixels wide ones, we get a speedup of around
    1.2-1.4x compared to the 32 bit version.

    Examples of runtimes vs the 32 bit version, on a Cortex A53 :
    ARM AArch64
    vp9_loop_filter_h_4_8_neon : 144.0 127.2
    vp9_loop_filter_h_8_8_neon : 207.0 182.5
    vp9_loop_filter_h_16_8_neon : 415.0 328.7
    vp9_loop_filter_h_16_16_neon : 672.0 558.6
    vp9_loop_filter_mix2_h_44_16_neon : 302.0 203.5
    vp9_loop_filter_mix2_h_48_16_neon : 365.0 305.2
    vp9_loop_filter_mix2_h_84_16_neon : 365.0 305.2
    vp9_loop_filter_mix2_h_88_16_neon : 376.0 305.2
    vp9_loop_filter_mix2_v_44_16_neon : 193.2 128.2
    vp9_loop_filter_mix2_v_48_16_neon : 246.7 218.4
    vp9_loop_filter_mix2_v_84_16_neon : 248.0 218.5
    vp9_loop_filter_mix2_v_88_16_neon : 302.0 218.2
    vp9_loop_filter_v_4_8_neon : 89.0 88.7
    vp9_loop_filter_v_8_8_neon : 141.0 137.7
    vp9_loop_filter_v_16_8_neon : 295.0 272.7
    vp9_loop_filter_v_16_16_neon : 546.0 453.7

    The speedup vs C code in checkasm tests is around 2-7x, which is
    pretty much the same as for the 32 bit version. Even if these functions
    are faster than their 32 bit equivalent, the C version that we compare
    to also became around 1.3-1.7x faster than the C version in 32 bit.

    Based on START_TIMER/STOP_TIMER wrapping around a few individual
    functions, the speedup vs C code is around 4-5x.

    Examples of runtimes vs C on a Cortex A57 (for a slightly older version
    of the patch) :
    A57 gcc-5.3 neon
    loop_filter_h_4_8_neon : 256.6 93.4
    loop_filter_h_8_8_neon : 307.3 139.1
    loop_filter_h_16_8_neon : 340.1 254.1
    loop_filter_h_16_16_neon : 827.0 407.9
    loop_filter_mix2_h_44_16_neon : 524.5 155.4
    loop_filter_mix2_h_48_16_neon : 644.5 173.3
    loop_filter_mix2_h_84_16_neon : 630.5 222.0
    loop_filter_mix2_h_88_16_neon : 697.3 222.0
    loop_filter_mix2_v_44_16_neon : 598.5 100.6
    loop_filter_mix2_v_48_16_neon : 651.5 127.0
    loop_filter_mix2_v_84_16_neon : 591.5 167.1
    loop_filter_mix2_v_88_16_neon : 855.1 166.7
    loop_filter_v_4_8_neon : 271.7 65.3
    loop_filter_v_8_8_neon : 312.5 106.9
    loop_filter_v_16_8_neon : 473.3 206.5
    loop_filter_v_16_16_neon : 976.1 327.8

    The speed-up compared to the C functions is 2.5 to 6 and the cortex-a57
    is again 30-50% faster than the cortex-a53.

    This is an adapted cherry-pick from libav commits
    9d2afd1eb8c5cc0633062430e66326dbf98c99e0 and
    31756abe29eb039a11c59a42cb12e0cc2aef3b97.

    Signed-off-by : Ronald S. Bultje <rsbultje@gmail.com>

    • [DH] libavcodec/aarch64/Makefile
    • [DH] libavcodec/aarch64/vp9dsp_init_aarch64.c
    • [DH] libavcodec/aarch64/vp9lpf_neon.S