
Recherche avancée
Médias (1)
-
Richard Stallman et le logiciel libre
19 octobre 2011, par
Mis à jour : Mai 2013
Langue : français
Type : Texte
Autres articles (72)
-
Le profil des utilisateurs
12 avril 2011, parChaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...) -
Configurer la prise en compte des langues
15 novembre 2010, parAccéder à la configuration et ajouter des langues prises en compte
Afin de configurer la prise en compte de nouvelles langues, il est nécessaire de se rendre dans la partie "Administrer" du site.
De là, dans le menu de navigation, vous pouvez accéder à une partie "Gestion des langues" permettant d’activer la prise en compte de nouvelles langues.
Chaque nouvelle langue ajoutée reste désactivable tant qu’aucun objet n’est créé dans cette langue. Dans ce cas, elle devient grisée dans la configuration et (...) -
La sauvegarde automatique de canaux SPIP
1er avril 2010, parDans le cadre de la mise en place d’une plateforme ouverte, il est important pour les hébergeurs de pouvoir disposer de sauvegardes assez régulières pour parer à tout problème éventuel.
Pour réaliser cette tâche on se base sur deux plugins SPIP : Saveauto qui permet une sauvegarde régulière de la base de donnée sous la forme d’un dump mysql (utilisable dans phpmyadmin) mes_fichiers_2 qui permet de réaliser une archive au format zip des données importantes du site (les documents, les éléments (...)
Sur d’autres sites (4853)
-
How to "extend" aws docker base image (.net core from scratch) by ... libs/ubuntu/ffmpeg ?
26 avril 2022, par Nigrimmisti would like to use AWS Lambda through the image containers using .net core 3.1 and it is works fine for me in simplest code case. But i stucked with next scenario :


By default, aws provide base image with .net core with aws libs based on "from scratch". So as i know, it minimal Linux that does not contains even package manager.


I need to work with ffmpeg in the code, but to do it i need to install few packages and ... fmpeg. I have working code on image


FROM mcr.microsoft.com/dotnet/runtime:3.1-bionic



It is ubuntu with .net core runtime. But what is the right strategic in case of AWS Lambda image ? How can i ... merge them ?.


Have few ideas, but not sure :


- 

- use as is
FROM public.ecr.aws/lambda/dotnet:core3.1
and try to install package manager, all depenendencies to use ffmpeg and so on ? - Use
mcr.microsoft.com/dotnet/runtime:3.1-bionic
, somehow add required by amazon dependencies (how ? download content and attach from local ?) and configure it to run in Lambda runtime ? - ... ?








Will be glad to hear where is the solution here. Thanks !


- use as is
-
swscale : aarch64 : Optimize the final summation in the hscale routine
20 avril 2022, par Martin Storsjöswscale : aarch64 : Optimize the final summation in the hscale routine
Before : Cortex A53 A72 A73 Graviton 2 Graviton 3
hscale_8_to_15_width8_neon : 8273.0 4602.5 4289.5 2429.7 1629.1
hscale_8_to_15_width16_neon : 12405.7 6803.0 6359.0 3549.0 2378.4
hscale_8_to_15_width32_neon : 21258.7 11491.7 11469.2 5797.2 3919.6
hscale_8_to_15_width40_neon : 25652.0 14173.7 12488.2 6893.5 4810.4After :
hscale_8_to_15_width8_neon : 7633.0 3981.5 3350.2 1980.7 1261.1
hscale_8_to_15_width16_neon : 11666.7 5951.0 5512.0 3080.7 2131.4
hscale_8_to_15_width32_neon : 20900.7 10733.2 9481.7 5275.2 3862.1
hscale_8_to_15_width40_neon : 24826.0 13536.2 11502.0 6397.2 4731.9Thus, this gives overall a 8-29% speedup for the smaller filter
sizes, around 1-8% for the larger filter sizes.Inspired by a patch by Jonathan Swinney <jswinney@amazon.com>.
Signed-off-by : Martin Storsjö <martin@martin.st>
-
I tried to play the audio on Alexa skill from my S3 Bucket, from the test tab, **it show but in fact, I can't hear any sound
19 avril 2022, par Siti MaynaSo I tried to play the audio on Alexa skill from my S3 Bucket, from the test tab, it show but in fact, I can't hear any sound. Another fact is, that I tried to use the sample audio from https://developer.amazon.com/en-US/docs/alexa/custom-skills/ask-soundlibrary.html and it is worked, but why it won't work when it comes from my own S3 Bucket ?


Notes :


I've tried to test the skill using my mobile phone also.


I've tried to encode the audio using FFmpeg.


I've tried to use Jovo to convert the audio. https://v3.jovo.tech/audio-converter


I don't know how to fix this error.


There is no error message on cloud watch.


Assumptions :
There is some problem related to the audio resources or there is more set to play audio from S3 Bucket since the sample audio is working.


Steps to reproduce :




Build the interaction model






Encode the audio to make it Alexa skill friendly (fulfill the requirements, like sample rate, etc), I used and tried all of these :




A :


ffmpeg -i -ac 2 -codec:a libmp3lame -b:a 48k -ar 16000 -write_xing 0 



B :


ffmpeg -i -ac 2 -codec:a libmp3lame -b:a 48k -ar 24000 -write_xing 0 



C :


ffmpeg -y -i input.mp3 -ar 16000 -ab 48k -codec:a libmp3lame -ac 1 output.mp3





Upload the audio resources on S3Bucket
Audio sample on s3 storage but none of them are produce any sounds






Use the link and insert it to APLA.json





 {
 "type": "APLA",
 "version": "0.91",
 "description": "Simple document that generates speech",
 "mainTemplate": {
 "parameters": [
 "payload"
 ],
 "type": "Sequencer",
 "items": [
 {
 "type": "Audio",
 "source": "https://72578561-d9d8-47b4-811c-cafbcbc5ddb9-us-east-1.s3.amazonaws.com/Media/one-small-step-alexa-24.mp3"
 }
 ]
 }
 }




notes : I change the link sources based on audio that I tried.




the intent on lambda_function.py :




def _load_apl_document(file_path):
 # type: (str) -> Dict[str, Any]
 """Load the apl json document at the path into a dict object."""
 with open(file_path) as f:
 return json.load(f)

class LaunchRequestHandler(AbstractRequestHandler):
 """Handler for Skill Launch."""
 def can_handle(self, handler_input):
 # type: (HandlerInput) -> bool

 return ask_utils.is_request_type("LaunchRequest")(handler_input)

 def handle(self, handler_input):
 # type: (HandlerInput) -> Response
 logger.info("In LaunchRequestHandler")

 # type: (HandlerInput) -> Response
 speak_output = "Hello World!"
 # .ask("add a reprompt if you want to keep the session open for the user to respond")

 return (
 handler_input.response_builder
 #.speak(speak_output)
 .add_directive(
 RenderDocumentDirective(
 token="pagerToken",
 document=_load_apl_document("APLA.json"),
 datasources={}
 )
 )
 .response
 )





Deploy






Test it






The result of the test on my end :

The response for testing




the JSON response :


{
 "body": {
 "version": "1.0",
 "response": {
 "directives": [
 {
 "type": "Alexa.Presentation.APLA.RenderDocument",
 "token": "pagerToken",
 "document": {
 "type": "APLA",
 "version": "0.91",
 "description": "Simple document that generates speech",
 "mainTemplate": {
 "parameters": [
 "payload"
 ],
 "type": "Sequencer",
 "items": [
 {
 "type": "Audio",
 "source": "https://72578561-d9d8-47b4-811c-cafbcbc5ddb9-us-east-1.s3.amazonaws.com/Media/one-small-step-alexa-24.mp3"
 }
 ]
 }
 },
 "datasources": {}
 }
 ],
 "type": "_DEFAULT_RESPONSE"
 },
 "sessionAttributes": {},
 "userAgent": "ask-python/1.16.1 Python/3.7.12"
 }
}





On my cloud Watch :
Cloud Watch