
Recherche avancée
Autres articles (76)
-
(Dés)Activation de fonctionnalités (plugins)
18 février 2011, parPour gérer l’ajout et la suppression de fonctionnalités supplémentaires (ou plugins), MediaSPIP utilise à partir de la version 0.2 SVP.
SVP permet l’activation facile de plugins depuis l’espace de configuration de MediaSPIP.
Pour y accéder, il suffit de se rendre dans l’espace de configuration puis de se rendre sur la page "Gestion des plugins".
MediaSPIP est fourni par défaut avec l’ensemble des plugins dits "compatibles", ils ont été testés et intégrés afin de fonctionner parfaitement avec chaque (...) -
Participer à sa documentation
10 avril 2011La documentation est un des travaux les plus importants et les plus contraignants lors de la réalisation d’un outil technique.
Tout apport extérieur à ce sujet est primordial : la critique de l’existant ; la participation à la rédaction d’articles orientés : utilisateur (administrateur de MediaSPIP ou simplement producteur de contenu) ; développeur ; la création de screencasts d’explication ; la traduction de la documentation dans une nouvelle langue ;
Pour ce faire, vous pouvez vous inscrire sur (...) -
Creating farms of unique websites
13 avril 2011, parMediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...)
Sur d’autres sites (10864)
-
how minimize an image using @ffmpeg/ffmpeg then send it to firebase [closed]
4 juillet 2023, par Yassin Samirhow minimize an image using @ffmpeg/ffmpeg then send it to firebase storage with the original image


I couldn't find any solution to problem except firebase cloud function and my project is free and open source. I need like a function give it the image blob it returns to me the image minimized in a blob or an api


-
Setting a timeout for av_read_frame
20 décembre 2014, par user3663917I am new to FFMPEG and was trying to do HLS streaming using FFMPEG. When i tried using the function "av_read_frame" it returns a negative value whenever data is not available. Is there some method to make this function wait till some data is received or to make this function wait till a timeout is reached ?
-
how to allow a worker to run a ffmpeg command on heroku for my python/django app ?
10 mars 2013, par GetItDoneI've been stuck trying to figure this out for weeks. I previously asked a similar question found here but I never got any replies. I really cannot find any good documentation anywhere. All I need to do is use a worker (don't care what worker have django-celery and rq installed) to convert a file to flv when it is uploaded from a form. I was able to get this done easily locally, but after over a week I haven't been able to get it to work no matter what I have tried. I tried adding a tasks.py file for celery, or a worker.py file for rq, and I have no idea what else (if anything) needs to be done, such as in my settings.py or Procfile. My procfile looks like :
web: gunicorn lftv.wsgi -b 0.0.0.0:$PORT
celeryd: celery -A tasks worker --loglevel=info
worker: python worker.pyMy requirements.txt showing what I have installed looks like this :
Django==1.4.3
Logbook==0.4.1
amqp==1.0.6
anyjson==0.3.3
billiard==2.7.3.19
boto==2.6.0
celery==3.0.13
celery-with-redis==3.0
distribute==0.6.31
dj-database-url==0.2.1
django-celery==3.0.11
django-s3-folder-storage==0.1
django-storages==1.1.6
gunicorn==0.16.1
kombu==2.5.4
pil==1.1.7
psycopg2==2.4.5
python-dateutil==1.5
pytz==2012j
redis==2.7.2
requests==1.1.0
rq==0.3.2
six==1.2.0
times==0.6The only thing relevant in my settings.py are as follows :
BROKER_BACKEND = 'django'
BROKER_URL = #For this I copy/pasted the code from my redistogo add-on from heroku. Not sure if correct
BROKER_TRANSPORT_OPTIONS = {'visibility_timeout': 1800}Without trying to take up too much more space, my tasks.py looks like this :
import subprocess
@task
def ffmpeg_conversion(input_file):
converted_file = subprocess.call(input_file)
return converted_fileI use S3 to store my static and media files, and the upload works (adding uploads to my bucket), however no matter what I try the conversion never will. Is there a good tutorial for absolute beginners ? I followed the heroku redis tutorial, celery docs, rq docs, and whatever else I can find, and got the examples to work, but the worker will not execute the command from my view. For example one of the many things I tried :
...
ffmpeg = "ffmpeg -i %s -acodec mp3 -ar 22050 -f flv -s 320x240 %s" % (sourcefile, targetfile)
ffmpegresult = ffmpeg_conversion.delay(ffmpeg)
...or using rq
...
q = Queue(connection=conn)
result = q.enqueue(ffmpeg_conversion, ffmpeg)
...I seems like it should be simple, however I am completely self-taught and have never deployed a project whatsoever, and there just doesn't seem to be any good documentation or tutorial available for what I am trying to do. I can't judge whether I am completely off and completely missing something significant or relatively close to getting this to work. I really do appreciate any input whatsoever, this is driving me nuts. Thanks in advance.