Recherche avancée

Médias (1)

Mot : - Tags -/getid3

Autres articles (85)

  • Multilang : améliorer l’interface pour les blocs multilingues

    18 février 2011, par

    Multilang est un plugin supplémentaire qui n’est pas activé par défaut lors de l’initialisation de MediaSPIP.
    Après son activation, une préconfiguration est mise en place automatiquement par MediaSPIP init permettant à la nouvelle fonctionnalité d’être automatiquement opérationnelle. Il n’est donc pas obligatoire de passer par une étape de configuration pour cela.

  • Organiser par catégorie

    17 mai 2013, par

    Dans MédiaSPIP, une rubrique a 2 noms : catégorie et rubrique.
    Les différents documents stockés dans MédiaSPIP peuvent être rangés dans différentes catégories. On peut créer une catégorie en cliquant sur "publier une catégorie" dans le menu publier en haut à droite ( après authentification ). Une catégorie peut être rangée dans une autre catégorie aussi ce qui fait qu’on peut construire une arborescence de catégories.
    Lors de la publication prochaine d’un document, la nouvelle catégorie créée sera proposée (...)

  • Récupération d’informations sur le site maître à l’installation d’une instance

    26 novembre 2010, par

    Utilité
    Sur le site principal, une instance de mutualisation est définie par plusieurs choses : Les données dans la table spip_mutus ; Son logo ; Son auteur principal (id_admin dans la table spip_mutus correspondant à un id_auteur de la table spip_auteurs)qui sera le seul à pouvoir créer définitivement l’instance de mutualisation ;
    Il peut donc être tout à fait judicieux de vouloir récupérer certaines de ces informations afin de compléter l’installation d’une instance pour, par exemple : récupérer le (...)

Sur d’autres sites (5882)

  • Revision 32979 : meilleure structure pour les liens du .meta-publi on retient pour le ...

    15 novembre 2009, par cedric@… — Log

    meilleure structure pour les liens du .meta-publi on retient pour le titre dans le lien "Lire la suite de .."

  • Revision 37444 : Si les theora+vorbis plantent sur vorbis quand ils sont en mono, vorbis ...

    20 avril 2010, par kent1@… — Log

    Si les theora+vorbis plantent sur vorbis quand ils sont en mono, vorbis plantera aussi ... on rationalise tout cela

  • pyqt5 gui dependent on ffmpeg compiled with pyinstaller doesn't run on other machines ?

    19 octobre 2022, par Soren

    I am trying to create a simple Pyqt5 GUI for Windows 10 that uses OpenAI's model Whisper to transcribe a sound file and outputting the results in an Excel-file. It works on my own computer where I have installed the necessary dependencies for Whisper as stated on their github i.e. FFMEG. I provide a minimal example of my code below :

    


    # Import library
import whisper
import os
from PyQt5 import QtCore, QtGui, QtWidgets
import pandas as pd
import xlsxwriter


class Ui_Dialog(QtWidgets.QDialog):
    
    
    # Define functions to use in GUI
   
    # Define function for selecting input files
    def browsefiles(self, Dialog):
      
       
       # Make Dialog box and save files into tuple of paths
       files = QtWidgets.QFileDialog().getOpenFileNames(self, "Select soundfiles", os.getcwd(), "lyd(*mp2 *.mp3 *.mp4 *.m4a *wma *wav)")
       
       self.liste = []
       for url in range(len(files[0])):
           self.liste.append(files[0][url])   

    
    def model_load(self, Dialog):
               
        # Load picked model
        self.model = whisper.load_model(r'C:\Users\Søren\Downloads\Whisper_gui\models' + "\\" + self.combo_modelSize.currentText() + ".pt") ##the path is set to where the models are on the other machine
        
    
    def run(self, Dialog):
                
        # Make list for sound files
        liste_df = []
        
        
        # Running loop for interpreting and encoding sound files
        for url in range(len(self.liste)):
                          
            # Make dataframe
            df = pd.DataFrame(columns=["filename", "start", "end", "text"])
            
            # Run model
            result = self.model.transcribe(self.liste[url])
                            
            # Extract results
            for i in range(len(result["segments"])):
                start = result["segments"][i]["start"]
                end = result["segments"][i]["end"]
                text = result["segments"][i]["text"]
                
                df = df.append({"filename": self.liste[url].split("/")[-1],
                            "start": start, 
                            "end": end, 
                            "text": text}, ignore_index=True)
            
            # Add detected language to dataframe
            df["sprog"] = result["language"]
            
            
            liste_df.append(df)
        
        
        
        # Make excel output
        
        # Concatenate list of dfs
        dataframe = pd.concat(liste_df)
        
        
        # Create a Pandas Excel writer using XlsxWriter as the engine.
        writer = pd.ExcelWriter(self.liste[0].split(".")[0] + '_OUTPUT.xlsx', engine='xlsxwriter')
        writer_wrap_format = writer.book.add_format({"text_wrap": True, 'num_format': '@'})


        # Write the dataframe data to XlsxWriter. Turn off the default header and
        # index and skip one row to allow us to insert a user defined header.
        dataframe.to_excel(writer, sheet_name="Output", startrow=1, header=False, index=False)

        # Get the xlsxwriter workbook and worksheet objects.
        #workbook = writer.book
        worksheet = writer.sheets["Output"]

        # Get the dimensions of the dataframe.
        (max_row, max_col) = dataframe.shape

        # Create a list of column headers, to use in add_table().
        column_settings = [{'header': column} for column in dataframe.columns]

        # Add the Excel table structure. Pandas will add the data.
        worksheet.add_table(0, 0, max_row, max_col - 1, {'columns': column_settings})

        # Make the columns wider for clarity.
        worksheet.set_column(0, max_col - 1, 12)
        
        in_col_no = xlsxwriter.utility.xl_col_to_name(dataframe.columns.get_loc("text"))
        
        worksheet.set_column(in_col_no + ":" + in_col_no, 30, writer_wrap_format)

        # Close the Pandas Excel writer and output the Excel file.
        writer.save()
        writer.close()
    
    
    ## Design setup
    
    def setupUi(self, Dialog):
        Dialog.setObjectName("Dialog")
        Dialog.resize(730, 400)
        
        self.select_files = QtWidgets.QPushButton(Dialog)
        self.select_files.setGeometry(QtCore.QRect(40, 62, 81, 31))
        font = QtGui.QFont()
        font.setPointSize(6)
        self.select_files.setFont(font)
        self.select_files.setObjectName("select_files")
        
    
               
        
        self.combo_modelSize = QtWidgets.QComboBox(Dialog)
        self.combo_modelSize.setGeometry(QtCore.QRect(40, 131, 100, 21))
        font = QtGui.QFont()
        font.setPointSize(6)
        self.combo_modelSize.setFont(font)
        self.combo_modelSize.setObjectName("combo_modelSize")
               
        
        self.runButton = QtWidgets.QPushButton(Dialog)
        self.runButton.setGeometry(QtCore.QRect(40, 289, 71, 21))
        font = QtGui.QFont()
        font.setPointSize(6)
        self.runButton.setFont(font)
        self.runButton.setObjectName("runButton")
        
        
       

        self.retranslateUi(Dialog)
        QtCore.QMetaObject.connectSlotsByName(Dialog)
        
        
        
        modelSize_options = ['Chose model', 'tiny', 'base', 'small', 'medium', 'large']
        self.combo_modelSize.addItems(modelSize_options)
        
        # Do an action!
        self.select_files.clicked.connect(self.browsefiles)
        self.combo_modelSize.currentIndexChanged.connect(self.model_load)
        self.runButton.clicked.connect(self.run)
        
        
        
    

    def retranslateUi(self, Dialog):
        _translate = QtCore.QCoreApplication.translate
        Dialog.setWindowTitle(_translate("Dialog", "Dialog"))
        self.runButton.setText(_translate("Dialog", "Go!"))
        self.select_files.setText(_translate("Dialog", "Select"))


if __name__ == "__main__":
    import sys
    app = QtWidgets.QApplication(sys.argv)
    Dialog = QtWidgets.QDialog()
    ui = Ui_Dialog()
    ui.setupUi(Dialog)
    Dialog.show()
    sys.exit(app.exec_())


    


    I compile this app with pyinstaller using the following code. I had some issues to begin with so I found other with similar problems and ended up with this :

    


    pyinstaller --onedir --hidden-import=pytorch --collect-data torch --copy-metadata torch --copy-metadata tqdm --copy-metadata tokenizers --copy-metadata importlib_metadata --hidden-import="sklearn.utils._cython_blas" --hidden-import="sklearn.neighbors.typedefs" --hidden-import="sklearn.neighbors.quad_tree" --hidden-import="sklearn.tree" --hidden-import="sklearn.tree._utils" --copy-metadata regex --copy-metadata requests --copy-metadata packaging --copy-metadata filelock --copy-metadata numpy --add-data "./ffmpeg/*;./ffmpeg/" --hidden-import=whisper --copy-metadata whisper --collect-data whisper minimal_example_whisper.py

    


    When I take the outputtet dist directory and try to run the app on another Windows machine without FFMPEG installed (or Whisper or any other things), I get the following error from the terminal as I push the "run" button in the app (otherwise the app does run).

    


    C:\Users\Søren>"G:\minimal_example_whisper\minimal_example_whisper.exe"
whisper\transcribe.py:70: UserWarning: FP16 is not supported on CPU; using FP32 instead
Traceback (most recent call last):
  File "minimal_example_whisper.py", line 45, in run
  File "whisper\transcribe.py", line 76, in transcribe
  File "whisper\audio.py", line 111, in log_mel_spectrogram
  File "whisper\audio.py", line 42, in load_audio
  File "ffmpeg\_run.py", line 313, in run
  File "ffmpeg\_run.py", line 284, in run_async
  File "subprocess.py", line 951, in __init__
  File "subprocess.py", line 1420, in _execute_child
FileNotFoundError: [WinError 2] Den angivne fil blev ikke fundet


    


    I suspect this has something to do with FFMPEG not being installed on the other machines system ? Does anyone have an automatic solution for this when compiling the app or can it simply only run on machines that has FFMPEG installed ?

    


    Thanks in advance !