Recherche avancée

Médias (0)

Mot : - Tags -/xmlrpc

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (80)

  • Gestion des droits de création et d’édition des objets

    8 février 2011, par

    Par défaut, beaucoup de fonctionnalités sont limitées aux administrateurs mais restent configurables indépendamment pour modifier leur statut minimal d’utilisation notamment : la rédaction de contenus sur le site modifiables dans la gestion des templates de formulaires ; l’ajout de notes aux articles ; l’ajout de légendes et d’annotations sur les images ;

  • Dépôt de média et thèmes par FTP

    31 mai 2013, par

    L’outil MédiaSPIP traite aussi les média transférés par la voie FTP. Si vous préférez déposer par cette voie, récupérez les identifiants d’accès vers votre site MédiaSPIP et utilisez votre client FTP favori.
    Vous trouverez dès le départ les dossiers suivants dans votre espace FTP : config/ : dossier de configuration du site IMG/ : dossier des média déjà traités et en ligne sur le site local/ : répertoire cache du site web themes/ : les thèmes ou les feuilles de style personnalisées tmp/ : dossier de travail (...)

  • MediaSPIP v0.2

    21 juin 2013, par

    MediaSPIP 0.2 is the first MediaSPIP stable release.
    Its official release date is June 21, 2013 and is announced here.
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

Sur d’autres sites (11726)

  • Live streaming : node-media-server + Dash.js configured for real-time low latency

    7 juillet 2021, par Maoration

    We're working on an app that enables live monitoring of your back yard.
Each client has a camera connected to the internet, streaming to our public node.js server.

    



    I'm trying to use node-media-server to publish an MPEG-DASH (or HLS) stream to be available for our app clients, on different networks, bandwidths and resolutions around the world.

    



    Our goal is to get as close as possible to live "real-time" so you can monitor what happens in your backyard instantly.

    



    The technical flow already accomplished is :

    



      

    1. ffmpeg process on our server processes the incoming camera stream (separate child process for each camera) and publishes the stream via RTSP on the local machine for node-media-server to use as an 'input' (we are also saving segmented files, generating thumbnails, etc.). the ffmpeg command responsible for that is :

      



      -c:v libx264 -preset ultrafast -tune zerolatency -b:v 900k -f flv rtmp://127.0.0.1:1935/live/office

    2. 


    3. node-media-server is running with what I found as the default configuration for 'live-streaming'

      



      private NMS_CONFIG = {
server: {
  secret: 'thisisnotmyrealsecret',
},
rtmp_server: {
  rtmp: {
    port: 1935,
    chunk_size: 60000,
    gop_cache: false,
    ping: 60,
    ping_timeout: 30,
  },
  http: {
    port: 8888,
    mediaroot: './server/media',
    allow_origin: '*',
  },
  trans: {
    ffmpeg: '/usr/bin/ffmpeg',
    tasks: [
      {
        app: 'live',
        hls: true,
        hlsFlags: '[hls_time=2:hls_list_size=3:hls_flags=delete_segments]',
        dash: true,
        dashFlags: '[f=dash:window_size=3:extra_window_size=5]',
      },
    ],
  },
},


      



      } ;

    4. 


    5. As I understand it, out of the box NMS (node-media-server) publishes the input stream it gets in multiple output formats : flv, mpeg-dash, hls.
with all sorts of online players for these formats I'm able to access and the stream using the url on localhost. with mpeg-dash and hls I'm getting anything between 10-15 seconds of delay, and more.

    6. 


    




    



    My goal now is to implement a local client-side mpeg-dash player, using dash.js and configure it to be as close as possible to live.

    



    my code for that is :

    



    

    

    &#xD;&#xA;&#xD;&#xA;    &#xD;&#xA;        &#xD;&#xA;        &#xD;&#xA;    &#xD;&#xA;    &#xD;&#xA;        <div>&#xD;&#xA;            <video autoplay="" controls=""></video>&#xD;&#xA;        </div>&#xD;&#xA;        <code class="echappe-js">&lt;script src=&quot;https://cdnjs.cloudflare.com/ajax/libs/dashjs/3.0.2/dash.all.min.js&quot;&gt;&lt;/script&gt;&#xD;&#xA;&#xD;&#xA;        &lt;script&gt;&amp;#xD;&amp;#xA;            (function(){&amp;#xD;&amp;#xA;                // var url = &quot;https://dash.akamaized.net/envivio/EnvivioDash3/manifest.mpd&quot;;&amp;#xD;&amp;#xA;                var url = &quot;http://localhost:8888/live/office/index.mpd&quot;;&amp;#xD;&amp;#xA;                var player = dashjs.MediaPlayer().create();&amp;#xD;&amp;#xA;                &amp;#xD;&amp;#xA;                &amp;#xD;&amp;#xA;&amp;#xD;&amp;#xA;                // config&amp;#xD;&amp;#xA;                targetLatency = 2.0;        // Lowering this value will lower latency but may decrease the player&amp;#x27;s ability to build a stable buffer.&amp;#xD;&amp;#xA;                minDrift = 0.05;            // Minimum latency deviation allowed before activating catch-up mechanism.&amp;#xD;&amp;#xA;                catchupPlaybackRate = 0.5;  // Maximum catch-up rate, as a percentage, for low latency live streams.&amp;#xD;&amp;#xA;                stableBuffer = 2;           // The time that the internal buffer target will be set to post startup/seeks (NOT top quality).&amp;#xD;&amp;#xA;                bufferAtTopQuality = 2;     // The time that the internal buffer target will be set to once playing the top quality.&amp;#xD;&amp;#xA;&amp;#xD;&amp;#xA;&amp;#xD;&amp;#xA;                player.updateSettings({&amp;#xD;&amp;#xA;                    &amp;#x27;streaming&amp;#x27;: {&amp;#xD;&amp;#xA;                        &amp;#x27;liveDelay&amp;#x27;: 2,&amp;#xD;&amp;#xA;                        &amp;#x27;liveCatchUpMinDrift&amp;#x27;: 0.05,&amp;#xD;&amp;#xA;                        &amp;#x27;liveCatchUpPlaybackRate&amp;#x27;: 0.5,&amp;#xD;&amp;#xA;                        &amp;#x27;stableBufferTime&amp;#x27;: 2,&amp;#xD;&amp;#xA;                        &amp;#x27;bufferTimeAtTopQuality&amp;#x27;: 2,&amp;#xD;&amp;#xA;                        &amp;#x27;bufferTimeAtTopQualityLongForm&amp;#x27;: 2,&amp;#xD;&amp;#xA;                        &amp;#x27;bufferToKeep&amp;#x27;: 2,&amp;#xD;&amp;#xA;                        &amp;#x27;bufferAheadToKeep&amp;#x27;: 2,&amp;#xD;&amp;#xA;                        &amp;#x27;lowLatencyEnabled&amp;#x27;: true,&amp;#xD;&amp;#xA;                        &amp;#x27;fastSwitchEnabled&amp;#x27;: true,&amp;#xD;&amp;#xA;                        &amp;#x27;abr&amp;#x27;: {&amp;#xD;&amp;#xA;                            &amp;#x27;limitBitrateByPortal&amp;#x27;: true&amp;#xD;&amp;#xA;                        },&amp;#xD;&amp;#xA;                    }&amp;#xD;&amp;#xA;                });&amp;#xD;&amp;#xA;&amp;#xD;&amp;#xA;                console.log(player.getSettings());&amp;#xD;&amp;#xA;&amp;#xD;&amp;#xA;                setInterval(() =&gt; {&amp;#xD;&amp;#xA;                  console.log(&amp;#x27;Live latency= &amp;#x27;, player.getCurrentLiveLatency());&amp;#xD;&amp;#xA;                  console.log(&amp;#x27;Buffer length= &amp;#x27;, player.getBufferLength(&amp;#x27;video&amp;#x27;));&amp;#xD;&amp;#xA;                }, 3000);&amp;#xD;&amp;#xA;&amp;#xD;&amp;#xA;                player.initialize(document.querySelector(&quot;#videoPlayer&quot;), url, true);&amp;#xD;&amp;#xA;&amp;#xD;&amp;#xA;            })();&amp;#xD;&amp;#xA;&amp;#xD;&amp;#xA;        &lt;/script&gt;&#xD;&#xA;    &#xD;&#xA;

    &#xD;&#xA;

    &#xD;&#xA;

    &#xD;&#xA;&#xA;&#xA;

    with the online test video (https://dash.akamaized.net/envivio/EnvivioDash3/manifest.mpd) I see that the live latency value is close to 2 secs (but I have no way to actually confirm it. it's a video file streamed. in my office I have a camera so I can actually compare latency between real-life and the stream I get).&#xA;however when working locally with my NMS, it seems this value does not want to go below 20-25 seconds.

    &#xA;&#xA;

    Am I doing something wrong ? any configuration on the player (client-side html) I'm forgetting ?&#xA;or is there a missing configuration I should add on the server side (NMS) ?

    &#xA;

  • Call to undefined method FFMpeg\Media\Video::addWatermark()

    13 avril 2023, par Amir Khan

    I m trying to add a watermark to a video that I have but it's giving me this error while applying a watermark

    &#xA;

    The library is installed and working with the code commented but not when trying to add watermark

    &#xA;

    use FFMpeg\FFMpeg;&#xA;use ProtoneMedia\LaravelFFMpeg\Filters\WatermarkFactory;&#xA;    &#xA;$ffmpeg = FFMpeg::create();&#xA;$video = $ffmpeg->open(public_path(&#x27;video-making-test/test1.mp4&#x27;));&#xA;//    $video&#xA;//        ->filters()&#xA;//        ->resize(new \FFMpeg\Coordinate\Dimension(320, 240))&#xA;//        ->synchronize();&#xA;//    $video&#xA;//        ->frame(\FFMpeg\Coordinate\TimeCode::fromSeconds(10))&#xA;//        ->save(public_path(&#x27;video-making-test/results/frame.jpg&#x27;));&#xA;    $video->addWatermark(function(WatermarkFactory $watermark) {&#xA;    $watermark->fromDisk(&#x27;public&#x27;)&#xA;        ->open(&#x27;video-making-test/logo.png&#x27;)&#xA;        ->right(25)&#xA;        ->bottom(25);&#xA;});&#xA;

    &#xA;

  • Linux Media Player Survey Circa 2001

    2 septembre 2010, par Multimedia Mike — General

    Here’s a document I scavenged from my archives. It was dated September 1, 2001 and I now publish it 9 years later. It serves as sort of a time capsule for the state of media player programs at the time. Looking back on this list, I can’t understand why I couldn’t find MPlayer while I was conducting this survey, especially since MPlayer is the project I eventually started to work for a few months after writing this piece.

    For a little context, I had been studying multimedia concepts and tech for a year and was itching to get my hands dirty with practical multimedia coding. But I wanted to tackle what I perceived as unsolved problems– like playback of proprietary codecs. I didn’t want to have to build a new media playback framework just to start working on my problems. So I surveyed the players available to see which ones I could plug into and use as a testbed for implementing new decoders.

    Regarding Real Player, I wrote : “We’re trying to move away from the proprietary, closed-source “solutions”. Heh. Was I really an insufferable open source idealist back in the day ?

    Anyway, here’s the text with some Where are they now ? commentary [in brackets] :


    Towards an All-Inclusive Media Playing Solution for Linux

    I don’t feel that the media playing solutions for Linux set their sights high enough, even though they do tend to be quite ambitious.

    I want to create a media player for Linux that can open a file, figure out what type of file it is (AVI, MOV, etc.), determine the compression algorithms used to encode the audio and video chunks inside (MPEG, Cinepak, Sorenson, etc.) and replay the file using the best audio, video, and CPU facilities available on the computer.

    Video and audio playback is a solved problem on Linux ; I don’t wish to solve that problem again. The problem that isn’t solved is reliance on proprietary multimedia solutions through some kind of WINE-like layer in order to decode compressed multimedia files.

    Survey of Linux solutions for decoding proprietary multimedia
    updated 2001-09-01

    AVI Player for XMMS
    This is based on Avifile. All the same advantages and limitations apply.
    [Top Google hit is a Freshmeat page that doesn’t indicate activity since 2001-2002.]

    Avifile
    This player does a great job at taking apart AVI and ASF files and then feeding the compressed chunks of multimedia data through to the binary Win32 decoders.

    The program is written in C++ and I’m not very good at interpreting that kind of code. But I’m learning all over again. Examining the object hierarchy, it appears that the designers had the foresight to include native support for decoders that are compiled into the program from source code. However, closer examination reveals that there is support for ONE source decoder and that’s the “decoder” for uncompressed data. Still, I tried to manipulate this routine to accept and decode data from other codecs but no dice. It’s really confounding. The program always crashes when I feed non-uncompressed data through the source decoder.
    [Lives at http://avifile.sourceforge.net/ ; not updated since 2006.]

    Real Player
    There’s not much to do with this since it is closed source and proprietary. Even though there is a plugin architecture, that’s not satisfactory. We’re trying to move away from the proprietary, closed-source “solutions”.
    [Still kickin’ with version 11.]

    XAnim
    This is a well-established Unix media player. To his credit, the author does as well as he can with the resources he has. In other words, he supports the non-proprietary video codecs well, and even has support for some proprietary video codecs through binary-only decoders.

    The source code is extremely difficult to work with as the author chose to use the X coding format which I’ve never seen used anywhere else except for X header files. The infrastructure for extending the program and supporting other codecs and file formats is there, I suppose, but I would have to wrap my head around the coding style. Maybe I can learn to work past that. The other thing that bothers me about this program is the decoding approach : It seems that each video decoder includes routines to decompress the multimedia data into every conceivable RGB and YUV output format. This seems backwards to me ; it seems better to have one decoder function that decodes the data into its native format it was compressed from (e.g., YV12 for MPEG data) and then pass that data to another layer of the program that’s in charge of presenting the data and possibly converting it if necessary. This layer would encompass highly-optimized software conversion routines including special CPU-specific instructions (e.g., MMX and SSE) and eliminate the need to place those routines in lots of other routines. But I’m getting ahead of myself.
    [This one was pretty much dead before I made this survey, the most recent update being in 1999. Still, we owe it much respect as the granddaddy of Unix multimedia playback programs.]

    Xine
    This seems like a promising program. It was originally designed to play MPEGs from DVDs. It can also play MPEG files on a hard drive and utilizes the Xv extensions for hardware YUV playback. It’s also supposed to play AVI files using the same technique as Avifile but I have never, ever gotten it to work. If an AVI file has both video and sound, the binary video decoder can’t decode any frames. If the AVI file has video and no sound, the program gets confused and crashes, as far as I can tell.

    Still, it’s promising, and I’ve been trying to work around these crashes. It doesn’t yet have the type of modularization I’d like to see. Right now, it tailored to suit MPEG playback and AVI playback is an afterthought. Still, it appears to have a generalized interface for dropping in new file demultiplexers.

    I tried to extend the program for supporting source decoders by rewriting w32codec.c from scratch. I’m not having a smooth time of it so far. I’m able to perform some manipulations on the output window. However, I can’t get the program to deal with an RGB image format. It has trouble allocating an RGB surface with XvShmCreateImage(). This isn’t suprising, per my limited knowledge of X which is that Xv applies to YUV images, but it could also apply to RGB images as well. Anyway, the program should be able to fall back on regular RGB pixmaps if that Xv call fails.

    Right now, this program is looking the most promising. It will take some work to extend the underlying infrastructure, but it seems doable since I know C quite well and can understand the flow of this program, as opposed to Avifile and its C++. The C code also compiles about 10 times faster.
    [My home project for many years after a brief flirtation with MPlayer. It is still alive ; its latest release was just a month ago.]

    XMovie
    This library is a Quicktime movie player. I haven’t looked at it too extensively yet, but I do remember looking at it at one point and reading the documentation that said it doesn’t support key frames. Still, I should examine it again since they released a new version recently.
    [Heroine Virtual still puts out some software but XMovie has not been updated since 2005.]

    XMPS
    This program compiles for me, but doesn’t do much else. It can play an MP3 file. I have been able to get MPEG movies to play through it, but it refuses to show the full video frame, constricting it to a small window (obviously a bug).
    [This project is hosted on SourceForge and is listed with a registration date of 2003, well after this survey was made. So the project obviously lived elsewhere in 2001. Meanwhile, it doesn’t look like any files ever made it to SF for hosting.]

    XTheater
    I can’t even get this program to compile. It’s supposed to be an MPEG player based on SMPEG. As such, it probably doesn’t hold much promise for being easily extended into a general media player.
    [Last updated in 2002.]

    GMerlin
    I can’t get this to compile yet. I have a bug report in to the dev group.
    [Updated consistently in the last 9 years. Last update was in February of this year. I can’t find any record of my bug report, though.]