Recherche avancée

Médias (2)

Mot : - Tags -/media

Autres articles (68)

  • Support de tous types de médias

    10 avril 2011

    Contrairement à beaucoup de logiciels et autres plate-formes modernes de partage de documents, MediaSPIP a l’ambition de gérer un maximum de formats de documents différents qu’ils soient de type : images (png, gif, jpg, bmp et autres...) ; audio (MP3, Ogg, Wav et autres...) ; vidéo (Avi, MP4, Ogv, mpg, mov, wmv et autres...) ; contenu textuel, code ou autres (open office, microsoft office (tableur, présentation), web (html, css), LaTeX, Google Earth) (...)

  • Selection of projects using MediaSPIP

    2 mai 2011, par

    The examples below are representative elements of MediaSPIP specific uses for specific projects.
    MediaSPIP farm @ Infini
    The non profit organizationInfini develops hospitality activities, internet access point, training, realizing innovative projects in the field of information and communication technologies and Communication, and hosting of websites. It plays a unique and prominent role in the Brest (France) area, at the national level, among the half-dozen such association. Its members (...)

  • Sélection de projets utilisant MediaSPIP

    29 avril 2011, par

    Les exemples cités ci-dessous sont des éléments représentatifs d’usages spécifiques de MediaSPIP pour certains projets.
    Vous pensez avoir un site "remarquable" réalisé avec MediaSPIP ? Faites le nous savoir ici.
    Ferme MediaSPIP @ Infini
    L’Association Infini développe des activités d’accueil, de point d’accès internet, de formation, de conduite de projets innovants dans le domaine des Technologies de l’Information et de la Communication, et l’hébergement de sites. Elle joue en la matière un rôle unique (...)

Sur d’autres sites (5748)

  • Batch splitting large audio files into small fixed-length audio files in moments of silence

    26 juillet 2023, par Haldjärvi

    to train the SO-VITS-SVC neural network, we need 10-14 second voice files. As a material, let's say I use phrases from some game. I have already made a batch script for decoding different files into one working format, another batch script for removing silence, as well as a batch script for combining small audio files into files of 13-14 seconds (I used Python, pydub and FFmpeg). To successfully automatically create a training dataset, it remains only to make one batch script - Cutting audio files lasting more than 14 seconds into separate files lasting 10-14 seconds, cutting in places of silence or close to silence is highly preferable.

    


    So, it is necessary to batch cut large audio files (20 seconds, 70 seconds, possibly several hundred seconds) into segments of approximately 10-14 seconds, however, the main task is to look for the quietest place in the cut areas so as not to cut phrases in the middle of a word (this is not very good for model training). So, is it really possible to do this in a very optimal way, so that the processing of a 30-second file does not take 15 seconds, but is fast ? Quiet zone detection is required only in the area of cuts, that is, 10-14 seconds, if counted from the very beginning of the file.

    


    I would be very grateful for any help.

    


    I tried to write a script together with ChatGPT, but all options gave completely unpredictable results and were not even close to what I needed... I had to stop at the option with a sharp cut of files for exactly 14000 milliseconds. However, I hope there is a chance to make a variant with cutting exactly in quiet areas.

    


    import os
from pydub import AudioSegment

input_directory = ".../RemSilence/"
output_directory = ".../Split/"
max_duration = 14000

def split_audio_by_duration(input_file, duration):
    audio = AudioSegment.from_file(input_file)
    segments = []
    for i in range(0, len(audio), duration):
        segment = audio[i:i + duration]
        segments.append(segment)
    return segments

if __name__ == "__main__":
    os.makedirs(output_directory, exist_ok=True)
    audio_files = [os.path.join(input_directory, file) for file in os.listdir(input_directory) if file.endswith(".wav")]
    audio_files.sort(key=lambda file: len(AudioSegment.from_file(file)))
    for file in audio_files:
        audio = AudioSegment.from_file(file)
        if len(audio) > max_duration:
            segments = split_audio_by_duration(file, max_duration)
            for i, segment in enumerate(segments):
                output_filename = f"output_{len(os.listdir(output_directory))+1}.wav"
                output_file_path = os.path.join(output_directory, output_filename)
                segment.export(output_file_path, format="wav")
        else:
            output_filename = f"output_{len(os.listdir(output_directory))+1}.wav"
            output_file_path = os.path.join(output_directory, output_filename)
            audio.export(output_file_path, format="wav")


    


  • avcodec/sanm : SMUSH codec48 decoder

    16 décembre 2024, par Manuel Lauss
    avcodec/sanm : SMUSH codec48 decoder
    

    Adds a decoder for the SMUSH codec48 video encoding, as is used by
    the LucasArts game "Mysteries of the Sith".

    Signed-off-by : Manuel Lauss <manuel.lauss@gmail.com>
    Signed-off-by : Marton Balint <cus@passwd.hu>

    • [DH] libavcodec/sanm.c
  • avcodec/amfenc : Implement async_depth option

    7 novembre 2024, par Cameron Gutman
    avcodec/amfenc : Implement async_depth option
    

    This option, which is also available on other FFmpeg hardware encoders,
    allows the user to trade throughput for reduced output latency. This is
    useful for ultra low latency applications like game streaming.

    Signed-off-by : Cameron Gutman <aicommander@gmail.com>

    • [DH] libavcodec/amfenc.c
    • [DH] libavcodec/amfenc_av1.c
    • [DH] libavcodec/amfenc_h264.c
    • [DH] libavcodec/amfenc_hevc.c