Recherche avancée

Médias (0)

Mot : - Tags -/xmlrpc

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (21)

  • Personnaliser en ajoutant son logo, sa bannière ou son image de fond

    5 septembre 2013, par

    Certains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;

  • Ecrire une actualité

    21 juin 2013, par

    Présentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
    Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
    Vous pouvez personnaliser le formulaire de création d’une actualité.
    Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (5808)

  • Introducing the BigQuery & Data Warehouse Export feature

    30 janvier, par Matomo Core Team

    Matomo is built on a simple truth : your data belongs to you, and you should have complete control over it. That’s why we’re excited to launch our new BigQuery & Data Warehouse Export feature for Matomo Cloud, giving you even more ways to work with your analytics data. 

    Until now, getting raw data from Matomo Cloud required APIs and custom scripts, or waiting for engineering help.  

    Our new BigQuery & Data Warehouse Export feature removes those barriers. You can now access your raw, unaggregated data and schedule regular exports straight to your data warehouse. 

    The feature works with all major data warehouses including (but not limited to) : 

    • Google BigQuery 
    • Amazon Redshift 
    • Snowflake 
    • Azure Synapse Analytics 
    • Apache Hive 
    • Teradata 

    You can schedule exports, combine your Matomo data with other data sources in your data warehouse, and easily query data with SQL-like queries. 

    Direct raw data access for greater data portability 

    Waiting for engineering support can delay your work. Managing API connections and writing scripts can be time-consuming. This keeps you from focusing on what you do best—analysing data. 

    BigQuery create-table-menu

    With the BigQuery & Data Warehouse Export feature, you get direct access to your raw Matomo data without the technical setup. So, you can spend more time analysing data and finding insights that matter. 

    Bringing your data together 

    Answering business questions often requires data from multiple sources. A single customer interaction might span your CRM, web analytics, sales systems, and more. Piecing this data together manually is time-consuming—what starts as a seemingly simple question from stakeholders can turn into hours of work collecting and comparing data across different tools. 

    This feature lets you combine your Matomo data with data from other business systems in your data warehouse. Instead of switching between tools or manually comparing spreadsheets, you can analyse all your data in one place to better understand how customers interact with your business. 

    Easy, custom analysis with SQL-like queries 

    Standard, pre-built reports often don’t address the specific, detailed questions that analysts need to answer.  

    When you use the BigQuery & Data Warehouse Export feature, you can use SQL-like queries in your data warehouse to do detailed, customised analysis. This flexibility allows you to explore your data in depth and uncover specific insights that aren’t possible with pre-built reports. 

    Here is an example of how you might use SQL-like query to compare the behaviours of paying vs. non-paying users : 

    				
                                            <xmp>SELECT  

    custom_dimension_value AS user_type, -- Assuming 'user_type' is stored in a custom dimension

    COUNT(*) AS total_visits,  

    AVG(visit_total_time) AS avg_duration,

    SUM(conversion.revenue) AS total_spent  

    FROM  

    `your_project.your_dataset.matomo_log_visit` AS visit

    LEFT JOIN  

    `your_project.your_dataset.matomo_log_conversion` AS conversion  

    ON  

    visit.idvisit = conversion.idvisit  

    GROUP BY  

    custom_dimension_value; </xmp>
                                   

    This query helps you compare metrics such as the number of visits, average session duration, and total amount spent between paying and non-paying users. It provides a full view of behavioural differences between these groups. 

    Advanced data manipulation and visualisation 

    When you need to create detailed reports or dive deep into data analysis, working within the constraints of a fixed user interface (UI) can limit your ability to draw insights. 

    Exporting your Matomo data to a data warehouse like BigQuery provides greater flexibility for in-depth manipulation and advanced visualisations, enabling you to uncover deeper insights and tailor your reports more effectively. 

    Getting started 

    To set up data warehouse exports in your Matomo : 

    1. Go to System Admin (cog icon in the top right corner) 
    2. Select ‘Export’ from the left-hand menu 
    3. Choose ‘BigQuery & Data Warehouse’ 

    You’ll find detailed instructions in our data warehouse exports guide 

    Please note, enabling this feature will cost an additional 10% of your current subscription. You can view the exact cost by following the steps above. 

    New to Matomo ? Start your 21-day free trial now (no credit card required), or request a demo. 

  • How to reduce fps to reduce filesize using ffmpeg ?

    10 septembre 2024, par Asas

    I recorded the video in waaaay to high of fps and its like over 100 gb now, i dont want any quality degradation just to lower the fps to a reasonable 60 but when i googled i got the result which converted my video but the size is the same for some reason&#xA;I tried

    &#xA;

    ffmpeg -y -i input_video.mp4 -c copy -f h264 output_raw_bitstream.h264&#xA;ffmpeg -y -i input_video.mp4 -vn -acodec copy output_audio.aac&#xA;ffmpeg -y -r 24 -i output_raw_bitstream.h264 -i output_audio.aac -c copy output.mp4&#xA;

    &#xA;

    but replaced numbers and names for what is in my case but it outputs the same 100 plus filesize

    &#xA;

  • Different filesizes for images generated using octave and python

    22 février 2017, par Lakshay Garg

    I am using python (scikit-image) and octave to generate 200 images as follows

    Python3

    import numpy as np
    from skimage.io import imsave

    images = [255*np.ones((100,100), dtype=np.uint8),  # white
                np.zeros((100,100), dtype=np.uint8)]  # black

    for i in range(200): # save alternating black and white images
       imsave('%04d.png'%(i+1), images[i%2])

    Octave

    pkg load image;

    im1 = 255*ones(100,100); # white
    im2 = zeros(100,100);    # black
    for i=1:200
       name = sprintf('%04d.png', i);
       if mod(i,2) == 0
           imwrite(im1, name);
       else
           imwrite(im2, name);
       end
    end

    Next, I use ffmpeg to generate two videos (alternating white and black frames) from these two sets of images using the following command

    ffmpeg -r 10 -loglevel quiet \
          -i ./%04d.png -c:v libx264 \
          -preset ultrafast -crf 0 ./out.mkv
    1. Sizes of image files generated by both these codes are different.

      • Octave white : 192 bytes, black : 98 bytes
      • Python white : 120 bytes, black : 90 bytes
    2. Sizes of video files generated from these octave and python images are significantly different from each other.

      • Octave filesize : 60 kilobytes
      • Python filesize : 116 kilobytes

    Why do we have this apparently very strange behavior ?

    EDIT

    Since it was suggested that the behavior might be dues to octave and python using different bit-depths to store the images, I changes the octave code to use 8 bit numbers

    im1 = uint8(255*ones(100,100)); # white
    im2 = uint8(zeros(100,100));    # black

    and now the image file sizes are nearly the same

    • Octave white : 118 bytes, black : 90 bytes
    • Python white : 120 bytes, black : 90 bytes

    but the problem is still the same for video files, octave : 60K, python : 116K