Recherche avancée

Médias (0)

Mot : - Tags -/xmlrpc

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (32)

  • La file d’attente de SPIPmotion

    28 novembre 2010, par

    Une file d’attente stockée dans la base de donnée
    Lors de son installation, SPIPmotion crée une nouvelle table dans la base de donnée intitulée spip_spipmotion_attentes.
    Cette nouvelle table est constituée des champs suivants : id_spipmotion_attente, l’identifiant numérique unique de la tâche à traiter ; id_document, l’identifiant numérique du document original à encoder ; id_objet l’identifiant unique de l’objet auquel le document encodé devra être attaché automatiquement ; objet, le type d’objet auquel (...)

  • Personnaliser les catégories

    21 juin 2013, par

    Formulaire de création d’une catégorie
    Pour ceux qui connaissent bien SPIP, une catégorie peut être assimilée à une rubrique.
    Dans le cas d’un document de type catégorie, les champs proposés par défaut sont : Texte
    On peut modifier ce formulaire dans la partie :
    Administration > Configuration des masques de formulaire.
    Dans le cas d’un document de type média, les champs non affichés par défaut sont : Descriptif rapide
    Par ailleurs, c’est dans cette partie configuration qu’on peut indiquer le (...)

  • Contribute to documentation

    13 avril 2011

    Documentation is vital to the development of improved technical capabilities.
    MediaSPIP welcomes documentation by users as well as developers - including : critique of existing features and functions articles contributed by developers, administrators, content producers and editors screenshots to illustrate the above translations of existing documentation into other languages
    To contribute, register to the project users’ mailing (...)

Sur d’autres sites (5426)

  • Top 5 Web Analytics Tools for Your Site

    11 août 2023, par Erin — Analytics Tips

    At the start of July 2023, Universal Analytics (UA) users had to say goodbye to their preferred web analytics tool as Google discontinued it. While some find Google Analytics 4 (GA4) can do what they need, many GA4 users are starting to realise GA4 doesn’t meet all the needs UA once fulfilled. Consequently, they are actively seeking another web analytics tool to complement GA4 and address those unmet requirements effectively.

    In this article, we’ll break down five of the top web analytics tools on the market. You’ll find details about their core capabilities, pricing structures and some noteworthy pros and cons to help you decide which tool is the right fit for you. We’ve also included some key features a good web analytics tool should have to give you a baseline for comparison.

    Whether you’re a marketing manager focused on ROI of campaigns, a web analyst focused on conversions or simply interested in learning more about web analytics, there’s something for you on this list.

    What is a web analytics tool ?

    Web analytics tools collect and analyse information about your website’s visitors, their behaviour and the technical performance of your site. A web analytics tool compiles, measures and analyses website data to give you the information you need to improve site performance, boost conversions and increase your ROI.

    What makes a web analytics tool good ?

    Before we get into tool specifics, let’s go over some of the core features you can expect from a web analytics tool.

    For a web analytics tool to be worth your time (and money), it needs to cover the basics. For example :

    • Visitor reports : The number of visitors, whether they were unique or repeat visitors, the source of traffic (where they found your website), device information (if they’re using a desktop or mobile device) and demographic information like geographic location
    • Behaviour reports : What your visitors did while on your site, conversion rates (e.g., if they signed up for or purchased something), the pages they entered and exited from, average session duration, total time spent on a page and bounce rates (if they left without interacting with anything)
    • Technical information : Page loading speed and event tracking — where users are clicking, what they’re downloading or sharing from your site, if they’re engaging with the media on it and how far down the page they’re scrolling
    • Marketing campaign information : Breakdowns of ad campaigns by provider, showing if ads resulted in traffic to your site and lead to an eventual sale or conversion
    • Search Engine Optimisation (SEO) information : Which keywords on which pages are driving traffic to your site, and what search engines are they coming from
    • Real-time data tracking : Visitor, behaviour and technical information available in real-time, or close to it — allowing you to address to issues as they occur
    • Data visualisation : Charts and graphs illustrating the above information in an easily-readable format — helping identify opportunities and providing valuable insights you can leverage to improve site performance, conversion rates and the amount of time visitors spend on a page
    • Custom reporting : Create custom reports detailing the desired metrics and time frame you’re interested in
    • Security : User access controls and management tools to limit who can see and interact with user data
    • Resources : Official user guides, technical documentation, troubleshooting materials, customer support and community forums
    Google Analytics 4 dashboard

    Pros and Cons of Google Analytics 4

    Despite many users’ dissatisfaction, GA4 isn’t going away anytime soon. It’s still a powerful tool with all the standard features you’d expect. It’s the most popular choice for web analytics for a few other reasons, too, including :

    • It’s free to use
    • It’s easy to set up
    • It has a convenient mobile app
    • It has a wealth of user documentation and technical resources online
    • Its machine-learning capabilities help predict user behaviour and offer insights on how to grow your site
    • It integrates easily with other Google tools, like Google Search Console, Google Ads and Google Cloud

    That said, it comes with some serious drawbacks. Many users accustomed to UA have reported being unhappy with the differences between it and GA4. Their reasons range from changes to the user interface and bounce rate calculations, as well as Google’s switch from pageview-focused metrics to event-based ones. 

    Let’s take a look at some of the other cons :

    Now that you know GA4’s strengths and weaknesses, it’s time to explore other tools that can help fill in GA4’s gaps.

    Top 5 web analytics tools (that aren’t Google)

    Below is a list of popular web analytics tools that, unless otherwise stated, have all the features a good tool should have.

    Adobe Analytics

    Screenshot of the landing page for Adobe's web analytics tool

    Adobe is a trusted name in software, with tools that have shaped the technological landscape for decades, like Photoshop and Illustrator. With web design and UX tools Dreamweaver and XD, it makes sense that they’d offer a web analytics platform as well.

    Adobe Analytics provides not just web analytics but marketing analytics that tell you about customer acquisition and retention, ROI and ad campaign performance metrics. Its machine learning (ML) and AI-powered analytics predict future customer behaviour based on previously collected data.

    Key features : 

    • Multichannel data collection that covers computers, mobile devices and IoT devices
    • Adobe Sensei (AI/ML) for marketing attribution and anomaly detection
    • Tag management through Adobe Experience Platform Launch simplifies the tag creation and maintenance process to help you track how users interact with your site

    Pros :

    • User-friendly and simple to learn with a drag-and-drop interface
    • When integrated with other Adobe software, it becomes a powerful solution for enterprises
    • Saves your team a lot of time with the recommendations and insights automatically generated by Adobe’s AI/ML

    Cons :

    • No free version
    • Adobe Sensei and tag manager limited to premium version
    • Expensive, especially when combined with the company’s other software
    • Steep learning curve for both setup and use

    Mobile app : Yes

    Integrations : Integrates with Adobe Experience Manager Sites, the company’s CMS. Adobe Target, a CRO tool and part of the Adobe Marketing Cloud subscription, integrates with Analytics.

    Pricing : Available upon request

    Matomo

    Screenshot of Matomo Web Analytics Dashboard

    Matomo is the leading open-source web analytics solution designed to help you make more informed decisions and enhance your customer experience while ensuring GDPR compliance and user privacy. With Matomo Cloud, your data is stored in Europe, while Matomo On-Premise allows you to host your data on your own servers.

    Matomo is used on over 1 million websites, in over 190 countries, and in over 50 languages. Additionally, Matomo is an all-in-one solution, with traditional web analytics (visits, acquisition, etc.) alongside behavioural analytics (heatmaps, session recordings and more), plus a tag manager. No more inefficiently jumping back and forth between tabs in a huge tech stack. It’s all in Matomo, for one consistent, seamless and efficient experience. 

    Key features : 

    • Heatmaps and session recording to display what users are clicking on and how individual users interacted with your site 
    • A/B testing to compare different versions of the same content and see which gets better results
    • Robust API that lets you get insights by connecting your data to other platforms, like data visualisation or business intelligence tools

    Pros : 

    • Open-source, reviewed by experts to ensure that it’s secure
    • Offers On-Premise or Cloud-hosted options
    • Fully compliant with GDPR, so you can be data-driven without worrying. 
    • Option to run without cookies, meaning in most countries you can use Matomo without annoying cookie consent banners and while getting more accurate data
    • You retain complete ownership of your data, with no third parties using it for advertising or unspecified “own purposes”

    Cons : 

    • On-Premise is free, but that means an additional cost for advanced features (A/B testing, heatmaps, etc.) that are included by default on Matomo Cloud
    • Matomo On-Premise requires servers and technical expertise to setup and manage

    Mobile app : Matomo offers a free mobile app (iOS and Android) so you can access your analytics on the go. 

    Integrations : Matomo integrates easily with many other tools and platforms, including WordPress, Looker Studio, Magento, Jira, Drupal, Joomla and Cloudflare.

    Pricing : 

    • Varies based on monthly hits
    • Matomo On-Premise : free
    • Matomo Cloud : starting at €19/month

    Mixpanel

    Screenshot of Mixpanel's product page

    Mixpanel’s features are heavily geared toward e-commerce companies. From the moment a visitor lands on your website to the moment they enter their payment details and complete a transaction, Mixpanel tracks these events.

    Similar to GA4, Mixpanel is an event-focused analytics platform. While you can still track pageviews with Mixpanel, its main focus is on the specific actions users take that lead them to purchases. Putting your attention on this information allows you to find out which events on your site are going through the sales funnel.

    They’re currently developing a Warehouse Events feature to simplify the process of importing data lakes and data warehouses.

    Key features :

    • Custom alerts and anomaly detection
    • Boards, which allow you to share multiple reports and insights with your team in a range of visual styles 
    • Detailed segmentation reporting that lets you break down your data to the individual user, specific event or geographic level

    Pros :

    • Boards allow for emojis, gifs, images and videos to make collaboration fun
    • Powerful mobile analytics for iOS and Android apps
    • Free promotional credits for eligible startups 

    Cons :

    • Limited features in free plan
    • Best features limited to the Enterprise-tier subscription
    • Complicated set up
    • Steep learning curve

    Mobile app : No

    Integrations : Mixpanel has a load of integrations, including Figma, Google Cloud, Slack, HappyFox, Snowflake, Microsoft Azure, Optimizely, Mailchimp and Tenjin. They also have a WordPress plugin.

    Pricing : 

    • Starter : free plan available
    • Growth : $20/month
    • Enterprise $833/month

    HubSpot Marketing

    Screenshot of Hubspot Marketing's main page

    HubSpot is a customer relationship management (CRM) platform with marketing, sales, customer service, content management system (CMS) and operations tools. This greater ecosystem of HubSpot software allows you to practically run your entire business in one place.

    Even though HubSpot Marketing isn’t a dedicated web analytics tool, it provides comparable standard metrics as the other tools on this list, albeit without the more advanced analytical metrics they offer. If you’re already using HubSpot to host your website, it’s definitely worth consideration.

    Key features :

    • Customer Journey Analytics presents the steps your customers went through in the sales process, step-by-step, in a visual way
    • Dashboards for your reports, including both fully customisable options for power users and pre-made templates for new users

    Pros :

    • Integration with other HubSpot tools, like HubSpot CRM’s free live chat widget 
    • User-friendly interface with many features being drag-and-drop, like the report dashboard
    • 24/7 customer support

    Cons :

    • Can get expensive with upgrades and other HubSpot tool add ons
    • Not a dedicated web analytics tool, so it’s missing some of the features other tools have, like heatmaps
    • Not really worth it as a standalone tool
    • Some users report customer support is unhelpful

    Mobile app : Yes

    Integrations : The larger HubSpot CRM platform can connect with nearly 1,500 other apps through the HubSpot App Marketplace. These include Slack, Microsoft Teams, Salesforce, Make, WordPress, SurveyMonkey, Shopify, monday.com, Stripe, WooCommerce and hundreds of others.

    Pricing : 

    • Starter : $20/month ($18/month with annual plan) 
    • Professional : $890/month ($800/month with annual plan) 
    • Enterprise : $3,600/month ($43,200 billed annually)

    Kissmetrics

    Screenshot of the landing page of web analytics tool Kissmetrics

    Kissmetrics is a web analytics tool that is marketed toward SaaS and ecommerce companies. They label themselves as “person-based” because they combine event-based tracking with detailed user profiles of the visitors to your site, which allows you to gain insights into customer behaviour. 

    With user profiles, you can drill down to see how many times someone has visited your site, if they’ve purchased from you and the steps they took before completing a sale. This allows you to cater more to these users and drive growth.

    Key features : 

    • Person Profiles that give granular information about individual users and their activities on your site
    • Campaigns, an engagement messenger application, allows you to set up email automations that are triggered by specific events
    • Detailed reporting tools 

    Pros : 

    • No third-party cookies
    • No data sampling
    • APIs for Ruby on Rails, JavaScript, Python and PHP

    Cons : 

    • Difficult installation
    • Strongest reporting features only available in the most expensive plan
    • Reports can be slow to generate
    • Requires custom JavaScript code to tack single-page applications
    • Doesn’t track demographic data, bounce rate, exits, session length or time on page

    Mobile app : No

    Integrations : Kissmetrics integrates with HubSpot, Appcues, Slack, Mailchimp, Shopify, WooCommerce, Recurly and a dozen others. There is also a Kissmetrics WordPress plugin.

    Pricing : 

    • Silver : $299/month (small businesses)
    • Gold : $499/month (medium) 
    • Platinum : custom pricing (enterprises)

    Conclusion

    In this article, you learned about popular tools for web analytics to better inform you of your options. Despite all of GA4’s shortcomings, by complementing it with another web analytics tool, teams can gain a more comprehensive understanding of their website traffic and enhance their overall analytics capabilities.

    If you want an option that delivers powerful insights while keeping privacy, security and compliance at the forefront, you should try Matomo. 

    Try Matomo alongside Google Analytics now to see how it compares.

    Start your 21-day free trial now – no credit card required.

  • GA360 Sunset : Is Now the Time to Switch ?

    20 mai 2024, par Erin

    Google pushed the sunset date of Universal Analytics 360 to July 2024, giving enterprise users more time to transition to Google Analytics 4. This extension is also seen by some as time to find a suitable alternative. 

    While Google positions GA4 as an upgrade to Universal Analytics, the new platform has faced its fair share of backlash. 

    So before you rush to meet the new sunset deadline, ask yourself this question : Is now the time to switch to a Google Analytics alternative ?

    In this article, we’ll explain what the new GA360 sunset date means and show you what you could gain by choosing a privacy-friendly alternative. 

    What’s happening with the final GA360 sunset ?

    Google has given Universal Analytics 360 properties with a current 360 licence a one-time extension, which will end on 1 July 2024.

    Why did Google extend the sunset ?

    In a blog post on Google, Russell Ketchum, Director of Product Management at Google Analytics, provided more details about the final GA360 sunset. 

    In short, the tech giant realised it would take large enterprise accounts (which typically have complex analytics setups) much longer to transition smoothly. The extension gives them time to migrate to GA4 and check everything is tracking correctly. 

    What’s more, Google is also focused on improving the GA4 experience before more GA360 users migrate :

    “We’re focusing our efforts and investments on Google Analytics 4 to deliver a solution built to adapt to a changing ecosystem. Because of this, throughout 2023 we’ll be shifting support away from Universal Analytics 360 and will move our full focus to Google Analytics 4 in 2024. As a result, performance will likely degrade in Universal Analytics 360 until the new sunset date.”

    Despite the extension, the July sunset is definitive. 

    Starting the week of 1 July 2024, you won’t be able to access any Universal Analytics properties or the API (not even with read-only access), and all data will be deleted.

    In other words, it’s not just data collection that will cease at the start of July. You won’t be able to access the platform, and all your data will be deleted. 

    What GA360 features is Google deprecating, and when ?

    If you’re wondering which GA360 features are being deprecated and when, here is the timeline for Google’s final GA360 sunset :

    • 1 January 2024 : From the beginning of the year, Google doesn’t guarantee all features and functionalities in UA 360 will continue to work as expected. 
    • 29 January 2024 : Google began deprecating a string of advertising and measurement features as it shifts resources to focus on GA4. These features include :
      • Realtime reports
      • Lifetime Value report
      • Model Explorer
      • Cohort Analysis
      • Conversion Probability report
      • GDN Impression Beta
    • Early March 2024 : Google began deprecating more advertising and measurement features. Deprecated advertising features include Demographic and Interest reports, Publisher reporting, Phone Analytics, Event and Salesforce Data Import, and Realtime BigQuery Export. Deprecated measurement features include Universal Analytics property creation, App Views, Unsampled reports, Custom Tables and annotations.
    • Late March 2024 : This is the last recommended date for migration to GA4 to give users three months to validate data and settings. By this date, Google recommends that you migrate your UA’s Google Ads links to GA4, create new Google Ad conversions based on GA4 events, and add GA4 audiences to campaigns and ad groups for retargeting. 
    • 1 July 2024 : From 1 July 2024, you won’t be able to access any UA properties, and all data will be deleted.

    What’s different about GA4 360 ? 

    GA4 comes with a new set of metrics, setups and reports that change how you analyse your data. We highlight the key differences between Universal Analytics and GA4 below. 

    What’s different about GA4?

    New dashboard

    The layout of GA4 is completely different from Universal Analytics, so much so that the UX can be very complex for first-time and experienced GA users alike. Reports or metrics that used to be available in a couple of clicks in UA now take five or more to find. While you can do more in theory with GA4, it takes much more work. 

    New measurements

    The biggest difference between GA4 and UA is how Google measures data. GA4 tracks events — and everything counts as an event. That includes pageviews, scrolls, clicks, file downloads and contact form submissions. 

    The idea is to anonymise data while letting you track complex buyer journeys across multiple devices. However, it can be very confusing, even for experienced marketers and analysts. 

    New metrics

    You won’t be able to track the same metrics in GA4 as in Universal Analytics. Rather than bounce rate, for example, you are forced to track engagement rate, which is the percentage of engaged sessions. These sessions last at least ten seconds, at least two pageviews or at least one conversion event. 

    Confused ? You’re not alone. 

    New reports

    Most reports you’ll be familiar with in Universal Analytics have been replaced in GA4. The new platform also has a completely different reporting interface, with every report grouped under the following five headings : realtime, audience, acquisition, behaviour and conversions. It can be hard for experienced marketers, let alone beginners, to find their way around these new reports. 

    AI insights

    GA4 has machine learning (ML) capabilities that allow you to generate AI insights from your data. Specifically, GA4 has predictive analytics features that let you track three trends : 

    • Purchase probability : the likelihood that a consumer will make a purchase in a given timeframe.
    • Churn probability : the likelihood a customer will churn in a given period.
    • Predictive revenue : the amount of revenue a user is likely to generate over a given period. 

    Google generates these insights using historical data and machine learning algorithms. 

    Cross-platform capabilities

    GA4 also offers cross-platform capabilities, meaning it can track user interactions across websites and mobile apps, giving businesses a holistic view of customer behaviour. This allows for better decision-making throughout the customer journey.

    Does GA4 360 come with other risks ?

    Aside from the poor usability, complexity and steep learning curve, upgrading your GA360 property to GA4 comes with several other risks.

    GA4 has a rocky relationship with privacy regulations, and while you can use it in a GDPR-compliant way at the moment, there’s no guarantee you’ll be able to do so in the future. 

    This presents the prospect of fines for non-compliance. A worse risk, however, is regulators forcing you to change web analytics platforms in the future—something that’s already happened in the EU. Migrating to a new application can be incredibly painful and time-consuming, especially when you can choose a privacy-friendly alternative that avoids the possibility of this scenario. 

    If all this wasn’t bad enough, switching to GA4 risks your historical Universal Analytics data. That’s because you can’t import Universal Analytics data into GA4, even if you migrate ahead of the sunset deadline.

    Why you should consider a GA4 360 alternative instead

    With the GA360 sunset on the horizon, what are your options if you don’t want to deal with GA4’s problems ? 

    The easiest solution is to migrate to a GA4 360 alternative instead. And there are plenty of reasons to migrate from Google Analytics to a privacy-friendly alternative like Matomo. 

    Keep historical data

    As we’ve explained, Google isn’t letting users import their Universal Analytics data from GA360 to GA4. The easiest way to keep it is by switching to a Google Analytics alternative like Matomo that lets you import your historical data. 

    Any business using Google Analytics, whether a GA360 user or otherwise, can import data into Matomo using our Google Analytics Importer plugin. It’s the best way to avoid disruption or losing data when moving on from Universal Analytics.

    Collect 100% accurate data

    Google Analytics implements data sampling and machine learning to fill gaps in your data and generate the kind of predictive insights we mentioned earlier. For standard GA4 users, data sampling starts at 10 million events. For GA4 360 users, data sampling starts at one billion events. Nevertheless, Google Analytics data may not accurately reflect your web traffic. 

    You can fix this using a Google Analytics alternative like Matomo that doesn’t use data sampling. That way, you can be confident that your data-driven decisions are being made with 100% accurate user data. 

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Guarantee user privacy first

    Google has a stormy relationship with the EU-US Data Privacy Framework—being banned and added back to the framework in recent years.

    Currently, organisations governed by GDPR can use Google Analytics to collect data about EU residents, but there’s no guarantee of their ability to do so in the future. Nor does the Framework prevent Google from using EU customer data for ulterior purposes such as marketing and training large language models. 

    By switching to a privacy-focused alternative like Matomo, you don’t have to worry about your user’s data ending up in the wrong hands.

    Upgrade to an all-in-one analytics tool

    Switching from Google Analytics can actually give organisations access to more features. That’s because some GA4 alternatives, like Matomo, offer advanced conversion optimisation features like heatmaps, session recordings, A/B testing, form analytics and more right out of the box. 

    Matomo Heatmaps Feature

    This makes Matomo a great choice for marketing teams that want to minimise their tech stack and use one tool for both web and behavioural analytics. 

    Get real-time reports

    GA4 isn’t the best tool for analysing website visitors in real time. That’s because it can take up to 4 hours to process new reports in GA360.

    However, Google Analytics alternatives like Matomo have a range of real-time reports you can leverage.

    Real-Time Map Tooltip

    In Matomo, the Real Time Visitor World Map and other reports are processed every 15 minutes. There is also a Visits in Real-time report, which refreshes every five seconds and shows a wealth of data for each visitor. 

    Matomo makes migration easy

    Whether it’s the poor usability, steep learning curve, inaccurate data or privacy issues, there’s every reason to think twice about migrating your UA360 account to GA4. 

    So why not migrate to a Google Analytics alternative like Matomo instead ? One that doesn’t sample data, guarantees your customers’ privacy, offers all the features GA4 doesn’t and is already used by over 1 million sites worldwide.

    Making the switch is easy. Matomo is one of the few web analytics tools that lets you import historical Google Analytics data. In doing so, you can continue to access your historical data and develop more meaningful insights by not having to start from scratch.

    If you’re ready to start a Google Analytics migration, you can try Matomo free for 21 days — no credit card required. 

  • Benefits and Shortcomings of Multi-Touch Attribution

    13 mars 2023, par Erin — Analytics Tips

    Few sales happen instantly. Consumers take their time to discover, evaluate and become convinced to go with your offer. 

    Multi-channel attribution (also known as multi-touch attribution or MTA) helps businesses better understand which marketing tactics impact consumers’ decisions at different stages of their buying journey. Then double down on what’s working to secure more sales. 

    Unlike standard analytics, multi-channel modelling combines data from various channels to determine their cumulative and independent impact on your conversion rates. 

    The main benefit of multi-touch attribution is obvious : See top-performing channels, as well as those involved in assisted conversions. The drawback of multi-touch attribution : It comes with a more complex setup process. 

    If you’re on the fence about getting started with multi-touch attribution, here’s a summary of the main arguments for and against it. 

    What Are the Benefits of Multi-Touch Attribution ?

    Remember an old parable of blind men and an elephant ?

    Each one touched the elephant and drew conclusions about how it might look. The group ended up with different perceptions of the animal and thought the others were lying…until they decided to work together on establishing the truth.

    Multi-channel analytics works in a similar way : It reconciles data from various channels and campaign types into one complete picture. So that you can get aligned on the efficacy of different campaign types and gain some other benefits too. 

    Better Understanding of Customer Journeys 

    On average, it takes 8 interactions with a prospect to generate a conversion. These interactions happen in three stages : 

    • Awareness : You need to introduce your company to the target buyers and pique their interest in your solution (top-of-the-funnel). 
    • Consideration : The next step is to channel this casual interest into deliberate research and evaluation of your offer (middle-of-the-funnel). 
    • Decision : Finally, you need to get the buyer to commit to your offer and close the deal (bottom-of-the-funnel). 

    You can analyse funnels using various attribution models — last-click, fist-click, position-based attribution, etc. Each model, however, will spotlight the different element(s) of your sales funnel. 

    For example, a single-touch attribution model like last-click zooms in on the bottom-of-the-funnel stage. You can evaluate which channels (or on-site elements) sealed the deal for the prospect. For example, a site visitor arrived from an affiliate link and started a free trial. In this case, the affiliate (referral traffic) gets 100% credit for the conversion. 

    This measurement tactic, however, doesn’t show which channels brought the customer to the very bottom of your funnel. For instance, they may have interacted with a social media post, your landing pages or a banner ad before that. 

    Multi-touch attribution modelling takes funnel analysis a notch further. In this case, you map more steps in the customer journey — actions, events, and pages that triggered a visitor’s decision to convert — in your website analytics tool.

    Funnels Report Matomo

    Then, select a multi-touch attribution model, which provides more backward visibility aka allows you to track more than one channel, preceding the conversion. 

    For example, a Position Based attribution model reports back on all interactions a site visitor had between their first visit and conversion. 

    A prospect first lands at your website via search results (Search traffic), which gets a 40% credit in this model. Two days later, the same person discovers a mention of your website on another blog and visits again (Referral traffic). This time, they save the page as a bookmark and revisit it again in two more days (Direct traffic). Each of these channels will get a 10% credit. A week later, the prospect lands again on your site via Twitter (Social) and makes a request for a demo. Social would then receive a 40% credit for this conversion. Last-click would have only credited social media and first-click — search engines. 

    The bottom line : Multi-channel attribution models show how different channels (and marketing tactics) contribute to conversions at different stages of the customer journey. Without it, you get an incomplete picture.

    Improved Budget Allocation 

    Understanding causal relationships between marketing activities and conversion rates can help you optimise your budgets.

    First-click/last-click attribution models emphasise the role of one channel. This can prompt you toward the wrong conclusions. 

    For instance, your Facebook ads campaigns do great according to a first-touch model. So you decide to increase the budget. What you might be missing though is that you could have an even higher conversion rate and revenue if you fix “funnel leaks” — address high drop-off rates during checkout, improve page layout and address other possible reasons for exiting the page.

    Matomo Customisable Goal Funnels
    Funnel reports at Matomo allow you to see how many people proceed to the next conversion stage and investigate why they drop off.

    By knowing when and why people abandon their purchase journey, you can improve your marketing velocity (aka the speed of seeing the campaign results) and your marketing costs (aka the budgets you allocate toward different assets, touchpoints and campaign types). 

    Or as one of the godfathers of marketing technology, Dan McGaw, explained in a webinar :

    “Once you have a multi-touch attribution model, you [can] actually know the return on ad spend on a per-campaign basis. Sometimes, you can get it down to keywords. Sometimes, you can get down to all kinds of other information, but you start to realise, “Oh, this campaign sucks. I should shut this off.” And then really, that’s what it’s about. It’s seeing those campaigns that suck and turning them off and then taking that budget and putting it into the campaigns that are working”.

    More Accurate Measurements 

    The big boon of multi-channel marketing attribution is that you can zoom in on various elements of your funnel and gain granular data on the asset’s performance. 

    In other words : You get more accurate insights into the different elements involved in customer journeys. But for accurate analytics measurements, you must configure accurate tracking. 

    Define your objectives first : How do you want a multi-touch attribution tool to help you ? Multi-channel attribution analysis helps you answer important questions such as :

    • How many touchpoints are involved in the conversions ? 
    • How long does it take for a lead to convert on average ? 
    • When and where do different audience groups convert ? 
    • What is your average win rate for different types of campaigns ?

    Your objectives will dictate which multi-channel modelling approach will work best for your business — as well as the data you’ll need to collect. 

    At the highest level, you need to collect two data points :

    • Conversions : Desired actions from your prospects — a sale, a newsletter subscription, a form submission, etc. Record them as tracked Goals
    • Touchpoints : Specific interactions between your brand and targets — specific page visits, referral traffic from a particular marketing channel, etc. Record them as tracked Events

    Your attribution modelling software will then establish correlation patterns between actions (conversions) and assets (touchpoints), which triggered them. 

    The accuracy of these measurements, however, will depend on the quality of data and the type of attribution modelling used. 

    Data quality stands for your ability to procure accurate, complete and comprehensive information from various touchpoints. For instance, some data won’t be available if the user rejected a cookie consent banner (unless you’re using a privacy-focused web analytics tool like Matomo). 

    Different attribution modelling techniques come with inherent shortcomings too as they don’t accurately represent the average sales cycle length or track visitor-level data, which allows you to understand which customer segments convert best.

    Learn more about selecting the optimal multi-channel attribution model for your business.

    What Are the Limitations of Multi-Touch Attribution ?

    Overall, multi-touch attribution offers a more comprehensive view of the conversion paths. However, each attribution model (except for custom ones) comes with inherent assumptions about the contribution of different channels (e.g,. 25%-25%-25%-25% in linear attribution or 40%-10%-10%-40% in position-based attribution). These conversion credit allocations may not accurately represent the realities of your industry. 

    Also, most attribution models don’t reflect incremental revenue you gain from existing customers, which aren’t converting through analysed channels. For example, account upgrades to a higher tier, triggered via an in-app offer. Or warranty upsell, made via a marketing email. 

    In addition, you should keep in mind several other limitations of multi-touch attribution software.

    Limited Marketing Mix Analysis 

    Multi-touch attribution tools work in conjunction with your website analytics app (as they draw most data from it). Because of that, such models inherit the same visibility into your marketing mix — a combo of tactics you use to influence consumer decisions.

    Multi-touch attribution tools cannot evaluate the impact of :

    • Dark social channels 
    • Word-of-mouth 
    • Offline promotional events
    • TV or out-of-home ad campaigns 

    If you want to incorporate this data into your multi-attribution reporting, you’ll have to procure extra data from other systems — CRM, ad measurement partners, etc, — and create complex custom analytics models for its evaluation.

    Time-Based Constraints 

    Most analytics apps provide a maximum 90-day lookback window for attribution. This can be short for companies with longer sales cycles. 

    Source : Marketing Charts

    Marketing channels can be overlooked or underappreciated when your attribution window is too short. Because of that, you may curtail spending on brand awareness campaigns, which, in turn, will reduce the number of people entering the later stages of your funnel. 

    At the same time, many businesses would also want to track a look-forward window — the revenue you’ll get from one customer over their lifetime. In this case, not all tools may allow you to capture accurate information on repeat conversions — through re-purchases, account tier updates, add-ons, upsells, etc. 

    Again, to get an accurate picture you’ll need to understand how far into the future you should track conversions. Will you only record your first sales as a revenue number or monitor customer lifetime value (CLV) over 3, 6 or 12 months ? 

    The latter is more challenging to do. But CLV data can add another depth of dimension to your modelling accuracy. With Matomo, you set up this type of tracking by using our visitors’ tracking feature. We can help you track select visitors with known identifiers (e.g. name or email address) to discover their visiting patterns over time. 

    Visitor User IDs in Matomo

    Limited Access to Raw Data 

    In web analytics, raw data stands for unprocessed website visitor information, stripped from any filters, segmentation or sampling applied. 

    Data sampling is a practice of analysing data subsets (instead of complete records) to extrapolate findings towards the entire data set. Google Analytics 4 applies data sampling once you hit over 500k sessions at the property level. So instead of accurate, real-life reporting, you receive approximations, generated by machine learning models. Data sampling is one of the main reasons behind Google Analytics’ accuracy issues

    In multi-channel attribution modelling, usage of sampled data creates further inconsistencies between the reports and the actual state of affairs. For instance, if your website generates 5 million page views, GA multi-touch analytical reports are based on the 500K sample size aka only 90% of the collected information. This hardly represents the real effect of all marketing channels and can lead to subpar decision-making. 

    With Matomo, the above is never an issue. We don’t apply data sampling to any websites (no matter the volume of traffic) and generate all the reports, including multi-channel attribution ones, based on 100% real user data. 

    AI Application 

    On the other hand, websites with smaller traffic volumes often have limited sampling datasets for building attribution models. Some tracking data may also be not available because the visitor rejected a cookie banner, for instance. On average, less than 50% of users in Australia, France, Germany, Denmark and the US among other countries always consent to all cookies. 

    To compensate for such scenarios, some multi-touch attribution solutions apply AI algorithms to “fill in the blanks”, which impacts the reporting accuracy. Once again, you get approximate data of what probably happened. However, Matomo is legally exempt from showing a cookie consent banner in most EU markets. Meaning you can collect 100% accurate data to make data-driven decisions.

    Difficult Technical Implementation 

    Ever since attribution modelling got traction in digital marketing, more and more tools started to emerge.

    Most web analytics apps include multi-touch attribution reports. Then there are standalone multi-channel attribution platforms, offering extra features for conversion rate optimization, offline channel tracking, data-driven custom modelling, etc. 

    Most advanced solutions aren’t available out of the box. Instead, you have to install several applications, configure integrations with requested data sources, and then use the provided interfaces to code together custom data models. Such solutions are great if you have a technical marketer or a data science team. But a steep learning curve and high setup costs make them less attractive for smaller teams. 

    Conclusion 

    Multi-touch attribution modelling lifts the curtain in more steps, involved in various customer journeys. By understanding which touchpoints contribute to conversions, you can better plan your campaign types and budget allocations. 

    That said, to benefit from multi-touch attribution modelling, marketers also need to do the preliminary work : Determine the key goals, set up event and conversion tracking, and then — select the optimal attribution model type and tool. 

    Matomo combines simplicity with sophistication. We provide marketers with familiar, intuitive interfaces for setting up conversion tracking across the funnel. Then generate attribution reports, based on 100% accurate data (without any sampling or “guesstimation” applied). You can also get access to raw analytics data to create custom attribution models or plug it into another tool ! 

    Start using accurate, easy-to-use multi-channel attribution with Matomo. Start your free 21-day trial now. No credit card requried.