
Recherche avancée
Autres articles (34)
-
Modifier la date de publication
21 juin 2013, parComment changer la date de publication d’un média ?
Il faut au préalable rajouter un champ "Date de publication" dans le masque de formulaire adéquat :
Administrer > Configuration des masques de formulaires > Sélectionner "Un média"
Dans la rubrique "Champs à ajouter, cocher "Date de publication "
Cliquer en bas de la page sur Enregistrer -
Les autorisations surchargées par les plugins
27 avril 2010, parMediaspip core
autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs -
Encoding and processing into web-friendly formats
13 avril 2011, parMediaSPIP automatically converts uploaded files to internet-compatible formats.
Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
All uploaded files are stored online in their original format, so you can (...)
Sur d’autres sites (5841)
-
Dreamcast Operating Systems
16 septembre 2010, par Multimedia Mike — Sega DreamcastThe Sega Dreamcast was famously emblazoned with a logo proudly announcing that it was compatible with Windows CE :
It’s quite confusing. The console certainly doesn’t boot into some version of Windows to launch games. Apparently, there was a special version of CE developed for the DC and game companies had the option to leverage it. I do recall that some game startup screens would similarly advertise Windows CE.
Once the homebrew community got ahold of the device, the sky was the limit. I think NetBSD was the first alternative OS to support the Dreamcast. Meanwhile, I have recollections of DC Linux and LinuxDC projects along with more generic Linux-SH and SH-Linux projects.
DC Evolution hosts a disc image available for download with an unofficial version of DC Linux, assembled by one Adrian O’Grady. I figured out how to burn the disc (burning DC discs is a blog post of its own) and got it working in the console.
It’s possible to log in directly via the physical keyboard or through a serial terminal provided that you have a coder’s cable. That reminds me– my local Fry’s had a selection of USB-to-serial cables. I think this is another area that is sufficiently commoditized that just about any cable ought to work with Linux out of the box. Or maybe I’m just extrapolating from the experience of having the cheapest cable in the selection (made by io connect) plug and play with Linux.
Look ! No messy converter box in the middle as in the Belkin case. The reason I went with this cable is that the packaging claimed it was capable of up to 500 Kbits/sec. Most of the cables advertised a max of 115200 bps. I distinctly recall being able to use the DC coder’s cable at 230400 bps a long time ago. Alas, 115200 seems to be the speed limit, even with this new USB cable.
Anyway, the distribution is based on a 2.4.5 kernel circa 2001. I tried to make PPP work over the serial cable but the kernel doesn’t have support. If you’re interested, here is some basic information about the machine from Linux’s perspective, gleaned from some simple commands. This helps remind us of a simpler time when Linux was able to run comfortably on a computer with 16 MB of RAM.
Debian GNU/Linux testing/unstable dreamcast ttsc/1
dreamcast login : root
Linux dreamcast 2.4.5 #27 Thu May 31 07:06:51 JST 2001 sh4 unknownMost of the programs included with the Debian GNU/Linux system are
freely redistributable ; the exact distribution terms for each program
are described in the individual files in /usr/share/doc/*/copyrightDebian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.dreamcast : # uname -a
Linux dreamcast 2.4.5 #27 Thu May 31 07:06:51 JST 2001 sh4 unknowndreamcast : # cat /proc/cpuinfo
cpu family : SH-4
cache size : 8K-byte/16K-byte
bogomips : 199.47Machine : dreamcast
CPU clock : 200.00MHz
Bus clock : 100.00MHz
Peripheral module clock : 50.00MHzdreamcast : # top -b
09:14:54 up 14 min, 1 user, load average : 0.04, 0.03, 0.03
15 processes : 14 sleeping, 1 running, 0 zombie, 0 stopped
CPU states : 1.1% user, 5.8% system, 0.0% nice, 93.1% idle
Mem : 14616K total, 11316K used, 3300K free, 2296K buffers
Swap : 0K total, 0K used, 0K free, 5556K cachedPID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
219 root 18 0 1072 1068 868 R 5.6 7.3 0:00 top
1 root 9 0 596 596 512 S 0.0 4.0 0:01 init
2 root 9 0 0 0 0 SW 0.0 0.0 0:00 keventd
3 root 9 0 0 0 0 SW 0.0 0.0 0:00 kswapd
4 root 9 0 0 0 0 SW 0.0 0.0 0:00 kreclaimd
5 root 9 0 0 0 0 SW 0.0 0.0 0:00 bdflush
6 root 9 0 0 0 0 SW 0.0 0.0 0:00 kupdated
7 root 9 0 0 0 0 SW 0.0 0.0 0:00 kmapled
39 root 9 0 900 900 668 S 0.0 6.1 0:00 devfsd
91 root 8 0 652 652 556 S 0.0 4.4 0:00 pump
96 daemon 9 0 524 524 420 S 0.0 3.5 0:00 portmap
149 root 9 0 944 944 796 S 0.0 6.4 0:00 syslogd
152 root 9 0 604 604 456 S 0.0 4.1 0:00 klogd
187 root 9 0 540 540 456 S 0.0 3.6 0:00 getty
201 root 9 0 1380 1376 1112 S 0.0 9.4 0:01 bashNote that at this point I had shutdown both gpm and inetd. The rest of the processes, save for bash, are default. The above stats only report about 14 MB of RAM ; where are the other 2 MB ?
dreamcast : # df -h Filesystem Size Used Avail Use% Mounted on /dev/rd/1 2.0M 560k 1.4M 28% /
-
How do you start ffserver when the server starts up ? [closed]
14 mars 2013, par CoryGI have ffmpeg's ffserver installed on Ubuntu but want to start it as a daemon feeding it a config file when the server boots, how do I go about doing so ?
-
Simply beyond ridiculous
For the past few years, various improvements on H.264 have been periodically proposed, ranging from larger transforms to better intra prediction. These finally came together in the JCT-VC meeting this past April, where over two dozen proposals were made for a next-generation video coding standard. Of course, all of these were in very rough-draft form ; it will likely take years to filter it down into a usable standard. In the process, they’ll pick the most useful features (hopefully) from each proposal and combine them into something a bit more sane. But, of course, it all has to start somewhere.
A number of features were common : larger block sizes, larger transform sizes, fancier interpolation filters, improved intra prediction schemes, improved motion vector prediction, increased internal bit depth, new entropy coding schemes, and so forth. A lot of these are potentially quite promising and resolve a lot of complaints I’ve had about H.264, so I decided to try out the proposal that appeared the most interesting : the Samsung+BBC proposal (A124), which claims compression improvements of around 40%.
The proposal combines a bouillabaisse of new features, ranging from a 12-tap interpolation filter to 12thpel motion compensation and transforms as large as 64×64. Overall, I would say it’s a good proposal and I don’t doubt their results given the sheer volume of useful features they’ve dumped into it. I was a bit worried about complexity, however, as 12-tap interpolation filters don’t exactly scream “fast”.
I prepared myself for the slowness of an unoptimized encoder implementation, compiled their tool, and started a test encode with their recommended settings.
I waited. The first frame, an I-frame, completed.
I took a nap.
I waited. The second frame, a P-frame, was done.
I played a game of Settlers.
I waited. The third frame, a B-frame, was done.
I worked on a term paper.
I waited. The fourth frame, a B-frame, was done.
After a full 6 hours, 8 frames had encoded. Yes, at this rate, it would take a full two weeks to encode 10 seconds of HD video. On a Core i7. This is not merely slow ; this is over 1000 times slower than x264 on “placebo” mode. This is so slow that it is not merely impractical ; it is impossible to even test. This encoder is apparently designed for some sort of hypothetical future computer from space. And word from other developers is that the Intel proposal is even slower.
This has led me to suspect that there is a great deal of cheating going on in the H.265 proposals. The goal of the proposals, of course, is to pick the best feature set for the next generation video compression standard. But there is an extra motivation : organizations whose features get accepted get patents on the resulting standard, and thus income. With such large sums of money in the picture, dishonesty becomes all the more profitable.
There is a set of rules, of course, to limit how the proposals can optimize their encoders. If different encoders use different optimization techniques, the results will no longer be comparable — remember, they are trying to compare compression features, not methods of optimizing encoder-side decisions. Thus all encoders are required to use a constant quantizer, specified frame types, and so forth. But there are no limits on how slow an encoder can be or what algorithms it can use.
It would be one thing if the proposed encoder was a mere 10 times slower than the current reference ; that would be reasonable, given the low level of optimization and higher complexity of the new standard. But this is beyond ridiculous. With the prize given to whoever can eke out the most PSNR at a given quantizer at the lowest bitrate (with no limits on speed), we’re just going to get an arms race of slow encoders, with every company trying to use the most ridiculous optimizations possible, even if they involve encoding the frame 100,000 times over to choose the optimal parameters. And the end result will be as I encountered here : encoders so slow that they are simply impossible to even test.
Such an arms race certainly does little good in optimizing for reality where we don’t have 30 years to encode an HD movie : a feature that gives great compression improvements is useless if it’s impossible to optimize for in a reasonable amount of time. Certainly once the standard is finalized practical encoders will be written — but it makes no sense to optimize the standard for a use-case that doesn’t exist. And even attempting to “optimize” anything is difficult when encoding a few seconds of video takes weeks.
Update : The people involved have contacted me and insist that there was in fact no cheating going on. This is probably correct ; the problem appears to be that the rules that were set out were simply not strict enough, making many changes that I would intuitively consider “cheating” to be perfectly allowed, and thus everyone can do it.
I would like to apologize if I implied that the results weren’t valid ; they are — the Samsung-BBC proposal is definitely one of the best, which is why I picked it to test with. It’s just that I think any situation in which it’s impossible to test your own software is unreasonable, and thus the entire situation is an inherently broken one, given the lax rules, slow baseline encoder, and no restrictions on compute time.