Recherche avancée

Médias (10)

Mot : - Tags -/wav

Autres articles (49)

  • Support audio et vidéo HTML5

    10 avril 2011

    MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
    Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
    Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
    Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...)

  • HTML5 audio and video support

    13 avril 2011, par

    MediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
    The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
    For older browsers the Flowplayer flash fallback is used.
    MediaSPIP allows for media playback on major mobile platforms with the above (...)

  • De l’upload à la vidéo finale [version standalone]

    31 janvier 2010, par

    Le chemin d’un document audio ou vidéo dans SPIPMotion est divisé en trois étapes distinctes.
    Upload et récupération d’informations de la vidéo source
    Dans un premier temps, il est nécessaire de créer un article SPIP et de lui joindre le document vidéo "source".
    Au moment où ce document est joint à l’article, deux actions supplémentaires au comportement normal sont exécutées : La récupération des informations techniques des flux audio et video du fichier ; La génération d’une vignette : extraction d’une (...)

Sur d’autres sites (5528)

  • Sorenson Video 3 For Posterity

    12 août 2010, par Multimedia Mike — Software Museum

    On a recent dumpster dive, I procured a complete, never-been-opened copy of Sorenson Video 3 Professional Edition Compressor for Windows. And because I’m me, I thought it would be interesting to document it here :



    Not opened until now, anyway :



    I chuckled at the thought that I might open the user manual and find the complete data stream format listed therein. As expected, the guide offers a broad overview of video compression concepts (lossy vs. lossless, inter/intraframes, that kind of thing) and goes on to describe general guidelines for compressing different types of data. Then there is the feature reference. There are standard features and professional features (the latter includes things like bidirectional prediction, masking, and watermarking).

    I was hoping to figure out how to encode some video with this software. But I think I need full Quicktime Pro in order to do that. If you’re interested, here’s the user manual in PDF format : Sorenson Video 3 User Guide (626 Kbytes). Here’s an interesting claim from the chapter on audio compression :

    Most movies are made up of two parts, video and audio. Historically, the video portion of a digital movie was so large that the audio was only a minor piece of the puzzle. However, with Sorenson Video’s excellent compression capabilities it is possible to create a file where audio is the largest portion.

    I know it’s possible to do that, but is it really recommended ? I’m sure I have some samples in my vast repository where this is the case but it still doesn’t strike me as optimal for network delivery.

  • Wave Goodbye ; What About VP8/WebM ?

    7 août 2010, par Multimedia Mike — Multimedia PressWatch

    Some big news in the geek community this past week came in the form of Google’s announcement that it would no longer be caring about its vaunted Wave technology. I was mildly heartbroken by this since I had honestly wanted to try Google Wave. Then I remembered why I never got a chance to try it : they made it an exclusive club at the beginning. I really did try to glean some utility out of the concept by reading documentation and watching videos and I had some ideas about how I might apply it. Then again, I try to think of a use for nearly any technology that crosses my path.

    It still struck me as odd : Why would Google claim that no one was interested in their platform when they wouldn’t give anyone a chance to try it out ? A little digging reveals that Google did open it for general use back around May 18. That date sounds familiar... oh yeah, VP8 was open sourced right around the same time. Maybe that’s why I don’t remember hearing anything about Wave at the time.

    But now I’m wondering about VP8 and WebM. How long do you think it might be before Google loses interest in these initiatives as well and reassigns their engineering resources ? Fortunately, if they did do that, the technology would live on thanks to the efforts of FFmpeg developers. A multimedia format has a far more clear-cut use case than Google Wave.

  • ARM inline asm secrets

    6 juillet 2010, par Mans — ARM, Compilers

    Although I generally recommend against using GCC inline assembly, preferring instead pure assembly code in separate files, there are occasions where inline is the appropriate solution. Should one, at a time like this, turn to the GCC documentation for guidance, one must be prepared for a degree of disappointment. As it happens, much of the inline asm syntax is left entirely undocumented. This article attempts to fill in some of the blanks for the ARM target.

    Constraints

    Each operand of an inline asm block is described by a constraint string encoding the valid representations of the operand in the generated assembly. For example the “r” code denotes a general-purpose register. In addition to the standard constraints, ARM allows a number of special codes, only some of which are documented. The full list, including a brief description, is available in the constraints.md file in the GCC source tree. The following table is an extract from this file consisting of the codes which are meaningful in an inline asm block (a few are only useful in the machine description itself).

    f Legacy FPA registers f0-f7.
    t The VFP registers s0-s31.
    v The Cirrus Maverick co-processor registers.
    w The VFP registers d0-d15, or d0-d31 for VFPv3.
    x The VFP registers d0-d7.
    y The Intel iWMMX co-processor registers.
    z The Intel iWMMX GR registers.
    l In Thumb state the core registers r0-r7.
    h In Thumb state the core registers r8-r15.
    j A constant suitable for a MOVW instruction. (ARM/Thumb-2)
    b Thumb only. The union of the low registers and the stack register.
    I In ARM/Thumb-2 state a constant that can be used as an immediate value in a Data Processing instruction. In Thumb-1 state a constant in the range 0 to 255.
    J In ARM/Thumb-2 state a constant in the range -4095 to 4095. In Thumb-1 state a constant in the range -255 to -1.
    K In ARM/Thumb-2 state a constant that satisfies the I constraint if inverted. In Thumb-1 state a constant that satisfies the I constraint multiplied by any power of 2.
    L In ARM/Thumb-2 state a constant that satisfies the I constraint if negated. In Thumb-1 state a constant in the range -7 to 7.
    M In Thumb-1 state a constant that is a multiple of 4 in the range 0 to 1020.
    N Thumb-1 state a constant in the range 0 to 31.
    O In Thumb-1 state a constant that is a multiple of 4 in the range -508 to 508.
    Pa In Thumb-1 state a constant in the range -510 to +510
    Pb In Thumb-1 state a constant in the range -262 to +262
    Ps In Thumb-2 state a constant in the range -255 to +255
    Pt In Thumb-2 state a constant in the range -7 to +7
    G In ARM/Thumb-2 state a valid FPA immediate constant.
    H In ARM/Thumb-2 state a valid FPA immediate constant when negated.
    Da In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with two Data Processing insns.
    Db In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with three Data Processing insns.
    Dc In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with four Data Processing insns. This pattern is disabled if optimizing for space or when we have load-delay slots to fill.
    Dn In ARM/Thumb-2 state a const_vector which can be loaded with a Neon vmov immediate instruction.
    Dl In ARM/Thumb-2 state a const_vector which can be used with a Neon vorr or vbic instruction.
    DL In ARM/Thumb-2 state a const_vector which can be used with a Neon vorn or vand instruction.
    Dv In ARM/Thumb-2 state a const_double which can be used with a VFP fconsts instruction.
    Dy In ARM/Thumb-2 state a const_double which can be used with a VFP fconstd instruction.
    Ut In ARM/Thumb-2 state an address valid for loading/storing opaque structure types wider than TImode.
    Uv In ARM/Thumb-2 state a valid VFP load/store address.
    Uy In ARM/Thumb-2 state a valid iWMMX load/store address.
    Un In ARM/Thumb-2 state a valid address for Neon doubleword vector load/store instructions.
    Um In ARM/Thumb-2 state a valid address for Neon element and structure load/store instructions.
    Us In ARM/Thumb-2 state a valid address for non-offset loads/stores of quad-word values in four ARM registers.
    Uq In ARM state an address valid in ldrsb instructions.
    Q In ARM/Thumb-2 state an address that is a single base register.

    Operand codes

    Within the text of an inline asm block, operands are referenced as %0, %1 etc. Register operands are printed as rN, memory operands as [rN, #offset], and so forth. In some situations, for example with operands occupying multiple registers, more detailed control of the output may be required, and once again, an undocumented feature comes to our rescue.

    Special code letters inserted between the % and the operand number alter the output from the default for each type of operand. The table below lists the more useful ones.

    c An integer or symbol address without a preceding # sign
    B Bitwise inverse of integer or symbol without a preceding #
    L The low 16 bits of an immediate constant
    m The base register of a memory operand
    M A register range suitable for LDM/STM
    H The highest-numbered register of a pair
    Q The least significant register of a pair
    R The most significant register of a pair
    P A double-precision VFP register
    p The high single-precision register of a VFP double-precision register
    q A NEON quad register
    e The low doubleword register of a NEON quad register
    f The high doubleword register of a NEON quad register
    h A range of VFP/NEON registers suitable for VLD1/VST1
    A A memory operand for a VLD1/VST1 instruction
    y S register as indexed D register, e.g. s5 becomes d2[1]