
Recherche avancée
Médias (1)
-
Carte de Schillerkiez
13 mai 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Texte
Autres articles (49)
-
Support audio et vidéo HTML5
10 avril 2011MediaSPIP utilise les balises HTML5 video et audio pour la lecture de documents multimedia en profitant des dernières innovations du W3C supportées par les navigateurs modernes.
Pour les navigateurs plus anciens, le lecteur flash Flowplayer est utilisé.
Le lecteur HTML5 utilisé a été spécifiquement créé pour MediaSPIP : il est complètement modifiable graphiquement pour correspondre à un thème choisi.
Ces technologies permettent de distribuer vidéo et son à la fois sur des ordinateurs conventionnels (...) -
HTML5 audio and video support
13 avril 2011, parMediaSPIP uses HTML5 video and audio tags to play multimedia files, taking advantage of the latest W3C innovations supported by modern browsers.
The MediaSPIP player used has been created specifically for MediaSPIP and can be easily adapted to fit in with a specific theme.
For older browsers the Flowplayer flash fallback is used.
MediaSPIP allows for media playback on major mobile platforms with the above (...) -
De l’upload à la vidéo finale [version standalone]
31 janvier 2010, parLe chemin d’un document audio ou vidéo dans SPIPMotion est divisé en trois étapes distinctes.
Upload et récupération d’informations de la vidéo source
Dans un premier temps, il est nécessaire de créer un article SPIP et de lui joindre le document vidéo "source".
Au moment où ce document est joint à l’article, deux actions supplémentaires au comportement normal sont exécutées : La récupération des informations techniques des flux audio et video du fichier ; La génération d’une vignette : extraction d’une (...)
Sur d’autres sites (9130)
-
libavcodec/libx264 do not produce B-frames
6 novembre 2013, par Rob SchmidtI am writing an application in C++ that uses libavcodec with libx264 to encode video. However, the encoded data ended up being much larger than I expected. I analyzed the results and discovered that my encoding never produced B-frames, only I- and P-frames.
I created a standalone utility based on the ffmpeg source code and examples to test my encoder setup. It reads in an H.264 file, re-encodes the decoded frames, and outputs the result to a file using the ITU H.264 Annex B format. I also used ffmpeg to perform the same operation so I could compare against a known good implementation. My utility never outputs B-frames whereas ffmpeg does.
I have since tried to figure out what ffmpeg does that my code doesn't. I first tried manually specifying encoder settings related to B-frames. This had no effect.
I then tried running both ffmpeg and my utility under gdb and comparing the contents of the AVStream, AVCodecContext, and X264Context prior to opening the encoder and manually setting any fields that appeared different. Even with identical settings, I still only produce I- and P-frames.
Finally, I thought that perhaps the problem was with my timestamp handling. I reworked my test utility to mimic the pipeline used by ffmpeg and to output timestamp debugging output like ffmpeg does. Even with my timestamps identical to ffmpeg's I still get no B-frames.
At this point I don't know what else to try. When I run ffmpeg, I run it with the command line below. Note that aside from the "superfast" preset, I pretty much use the default values.
ffmpeg -v debug -i ~/annexb.264 -codec:v libx264 -preset superfast -g 30 -f h264 ./out.264
The code that configures the encoder is listed below. It specifies the "superfast" preset too.
static AVStream *add_video_stream(AVFormatContext *output_ctx, AVCodec **output_codec, enum AVCodecID codec_id)
{
*output_codec = avcodec_find_encoder(codec_id);
if (*output_codec == NULL) {
printf("Could not find encoder for '%s' (%d)\n", avcodec_get_name(codec_id), codec_id);
return NULL;
}
AVStream *output_stream = avformat_new_stream(output_ctx, *output_codec);
if (output_stream == NULL) {
printf("Could not create video stream.\n");
return NULL;
}
output_stream->id = output_ctx->nb_streams - 1;
AVCodecContext *codec_ctx = output_stream->codec;
avcodec_get_context_defaults3(codec_ctx, *output_codec);
codec_ctx->width = 1280;
codec_ctx->height = 720;
codec_ctx->time_base.den = 15000;
codec_ctx->time_base.num = 1001;
/* codec_ctx->gop_size = 30;*/
codec_ctx->pix_fmt = AV_PIX_FMT_YUVJ420P;
// try to force B-frame output
/* codec_ctx->max_b_frames = 3;*/
/* codec_ctx->b_frame_strategy = 2;*/
output_stream->sample_aspect_ratio.num = 1;
output_stream->sample_aspect_ratio.den = 1;
codec_ctx->sample_aspect_ratio.num = 1;
codec_ctx->sample_aspect_ratio.den = 1;
codec_ctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
codec_ctx->bits_per_raw_sample = 8;
if ((output_ctx->oformat->flags & AVFMT_GLOBALHEADER) != 0) {
codec_ctx->flags |= CODEC_FLAG_GLOBAL_HEADER;
}
return output_stream;
}
int main(int argc, char **argv)
{
// ... open input file
avformat_alloc_output_context2(&output_ctx, NULL, "h264", output_path);
if (output_ctx == NULL) {
fprintf(stderr, "Unable to allocate output context.\n");
return 1;
}
AVCodec *output_codec = NULL;
output_stream = add_video_stream(output_ctx, &output_codec, output_ctx->oformat->video_codec);
if (output_stream == NULL) {
fprintf(stderr, "Error adding video stream to output context.\n");
return 1;
}
encode_ctx = output_stream->codec;
// seems to have no effect
#if 0
if (decode_ctx->extradata_size != 0) {
size_t extradata_size = decode_ctx->extradata_size;
printf("extradata_size: %zu\n", extradata_size);
encode_ctx->extradata = av_mallocz(extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
memcpy(encode_ctx->extradata, decode_ctx->extradata, extradata_size);
encode_ctx->extradata_size = extradata_size;
}
#endif // 0
AVDictionary *opts = NULL;
av_dict_set(&opts, "preset", "superfast", 0);
// av_dict_set(&opts, "threads", "auto", 0); // seems to have no effect
ret = avcodec_open2(encode_ctx, output_codec, &opts);
if (ret < 0) {
fprintf(stderr, "Unable to open output video cocec: %s\n", av_err2str(ret));
return 1;
}
// ... decoding/encoding loop, clean up, etc.
return 0;
}My test utility produces the following debug output in which you can see there are no B-frames produced :
[libx264 @ 0x1b8c9c0] using mv_range_thread = 56
[libx264 @ 0x1b8c9c0] using SAR=1/1
[libx264 @ 0x1b8c9c0] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX
[libx264 @ 0x1b8c9c0] profile High, level 3.1
Output #0, h264, to './out.264':
Stream #0:0, 0, 1/90000: Video: h264, yuvj420p, 1280x720 [SAR 1:1 DAR 16:9], 1001/15000, q=-1--1, 90k tbn, 14.99 tbc
<snip>
[libx264 @ 0x1b8c9c0] frame= 0 QP=17.22 NAL=3 Slice:I Poc:0 I:3600 P:0 SKIP:0 size=122837 bytes
[libx264 @ 0x1b8c9c0] frame= 1 QP=18.03 NAL=2 Slice:P Poc:2 I:411 P:1825 SKIP:1364 size=25863 bytes
[libx264 @ 0x1b8c9c0] frame= 2 QP=17.03 NAL=2 Slice:P Poc:4 I:369 P:2159 SKIP:1072 size=37880 bytes
[libx264 @ 0x1b8c9c0] frame= 3 QP=16.90 NAL=2 Slice:P Poc:6 I:498 P:2330 SKIP:772 size=50509 bytes
[libx264 @ 0x1b8c9c0] frame= 4 QP=16.68 NAL=2 Slice:P Poc:8 I:504 P:2233 SKIP:863 size=50791 bytes
[libx264 @ 0x1b8c9c0] frame= 5 QP=16.52 NAL=2 Slice:P Poc:10 I:513 P:2286 SKIP:801 size=51820 bytes
[libx264 @ 0x1b8c9c0] frame= 6 QP=16.49 NAL=2 Slice:P Poc:12 I:461 P:2293 SKIP:846 size=51311 bytes
[libx264 @ 0x1b8c9c0] frame= 7 QP=16.65 NAL=2 Slice:P Poc:14 I:476 P:2287 SKIP:837 size=51196 bytes
[libx264 @ 0x1b8c9c0] frame= 8 QP=16.66 NAL=2 Slice:P Poc:16 I:508 P:2240 SKIP:852 size=51577 bytes
[libx264 @ 0x1b8c9c0] frame= 9 QP=16.55 NAL=2 Slice:P Poc:18 I:477 P:2278 SKIP:845 size=51531 bytes
[libx264 @ 0x1b8c9c0] frame= 10 QP=16.67 NAL=2 Slice:P Poc:20 I:517 P:2233 SKIP:850 size=51946 bytes
<snip>
[libx264 @ 0x1b8c9c0] frame I:7 Avg QP:13.71 size:152207
[libx264 @ 0x1b8c9c0] frame P:190 Avg QP:16.66 size: 50949
[libx264 @ 0x1b8c9c0] mb I I16..4: 27.1% 30.8% 42.1%
[libx264 @ 0x1b8c9c0] mb P I16..4: 6.8% 6.0% 0.8% P16..4: 61.8% 0.0% 0.0% 0.0% 0.0% skip:24.7%
[libx264 @ 0x1b8c9c0] 8x8 transform intra:41.2% inter:86.9%
[libx264 @ 0x1b8c9c0] coded y,uvDC,uvAC intra: 92.2% 28.3% 5.4% inter: 50.3% 1.9% 0.0%
[libx264 @ 0x1b8c9c0] i16 v,h,dc,p: 7% 7% 77% 8%
[libx264 @ 0x1b8c9c0] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 7% 15% 49% 6% 4% 3% 5% 3% 8%
[libx264 @ 0x1b8c9c0] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 19% 25% 24% 6% 7% 4% 6% 3% 6%
[libx264 @ 0x1b8c9c0] i8c dc,h,v,p: 72% 14% 10% 4%
[libx264 @ 0x1b8c9c0] Weighted P-Frames: Y:0.0% UV:0.0%
[libx264 @ 0x1b8c9c0] kb/s:6539.11
</snip></snip>ffmpeg, on the other hand, produces the following output that is almost identical but includes B-frames :
[libx264 @ 0x20b9c40] using mv_range_thread = 56
[libx264 @ 0x20b9c40] using SAR=1/1
[libx264 @ 0x20b9c40] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX
[libx264 @ 0x20b9c40] profile High, level 3.1
[h264 @ 0x20b8160] detected 4 logical cores
Output #0, h264, to './out.264':
Metadata:
encoder : Lavf54.63.104
Stream #0:0, 0, 1/90000: Video: h264, yuvj420p, 1280x720 [SAR 1:1 DAR 16:9], 1001/15000, q=-1--1, 90k tbn, 14.99 tbc
Stream mapping:
Stream #0:0 -> #0:0 (h264 -> libx264)
<snip>
[libx264 @ 0x20b9c40] frame= 0 QP=17.22 NAL=3 Slice:I Poc:0 I:3600 P:0 SKIP:0 size=122835 bytes
[libx264 @ 0x20b9c40] frame= 1 QP=18.75 NAL=2 Slice:P Poc:8 I:984 P:2045 SKIP:571 size=54208 bytes
[libx264 @ 0x20b9c40] frame= 2 QP=19.40 NAL=2 Slice:B Poc:4 I:447 P:1581 SKIP:1572 size=24930 bytes
[libx264 @ 0x20b9c40] frame= 3 QP=19.78 NAL=0 Slice:B Poc:2 I:199 P:1002 SKIP:2399 size=10717 bytes
[libx264 @ 0x20b9c40] frame= 4 QP=20.19 NAL=0 Slice:B Poc:6 I:204 P:1155 SKIP:2241 size=15937 bytes
[libx264 @ 0x20b9c40] frame= 5 QP=18.11 NAL=2 Slice:P Poc:16 I:990 P:2221 SKIP:389 size=64240 bytes
[libx264 @ 0x20b9c40] frame= 6 QP=19.35 NAL=2 Slice:B Poc:12 I:439 P:1784 SKIP:1377 size=34048 bytes
[libx264 @ 0x20b9c40] frame= 7 QP=19.88 NAL=0 Slice:B Poc:10 I:275 P:1035 SKIP:2290 size=16911 bytes
[libx264 @ 0x20b9c40] frame= 8 QP=19.91 NAL=0 Slice:B Poc:14 I:257 P:1270 SKIP:2073 size=19172 bytes
[libx264 @ 0x20b9c40] frame= 9 QP=17.90 NAL=2 Slice:P Poc:24 I:962 P:2204 SKIP:434 size=67439 bytes
[libx264 @ 0x20b9c40] frame= 10 QP=18.84 NAL=2 Slice:B Poc:20 I:474 P:1911 SKIP:1215 size=37742 bytes
<snip>
[libx264 @ 0x20b9c40] frame I:7 Avg QP:15.95 size:130124
[libx264 @ 0x20b9c40] frame P:52 Avg QP:17.78 size: 64787
[libx264 @ 0x20b9c40] frame B:138 Avg QP:19.32 size: 26231
[libx264 @ 0x20b9c40] consecutive B-frames: 6.6% 0.0% 0.0% 93.4%
[libx264 @ 0x20b9c40] mb I I16..4: 30.2% 35.2% 34.6%
[libx264 @ 0x20b9c40] mb P I16..4: 13.9% 11.4% 0.3% P16..4: 60.4% 0.0% 0.0% 0.0% 0.0% skip:13.9%
[libx264 @ 0x20b9c40] mb B I16..4: 5.7% 3.3% 0.0% B16..8: 15.8% 0.0% 0.0% direct:25.7% skip:49.5% L0:43.2% L1:37.3% BI:19.5%
[libx264 @ 0x20b9c40] 8x8 transform intra:39.4% inter:77.2%
[libx264 @ 0x20b9c40] coded y,uvDC,uvAC intra: 90.7% 26.6% 3.0% inter: 34.0% 4.1% 0.0%
[libx264 @ 0x20b9c40] i16 v,h,dc,p: 7% 7% 77% 9%
[libx264 @ 0x20b9c40] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 7% 16% 51% 5% 4% 3% 5% 3% 7%
[libx264 @ 0x20b9c40] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 22% 27% 20% 6% 6% 3% 6% 3% 6%
[libx264 @ 0x20b9c40] i8c dc,h,v,p: 71% 15% 11% 3%
[libx264 @ 0x20b9c40] Weighted P-Frames: Y:0.0% UV:0.0%
[libx264 @ 0x20b9c40] kb/s:4807.16
</snip></snip>I'm sure I'm missing something simple, but I can't for the life of me see what it is. Any assistance would be greatly appreciated.
-
libavcodec/libx264 do not produce B-frames
6 novembre 2013, par Rob SchmidtI am writing an application in C++ that uses libavcodec with libx264 to encode video. However, the encoded data ended up being much larger than I expected. I analyzed the results and discovered that my encoding never produced B-frames, only I- and P-frames.
I created a standalone utility based on the ffmpeg source code and examples to test my encoder setup. It reads in an H.264 file, re-encodes the decoded frames, and outputs the result to a file using the ITU H.264 Annex B format. I also used ffmpeg to perform the same operation so I could compare against a known good implementation. My utility never outputs B-frames whereas ffmpeg does.
I have since tried to figure out what ffmpeg does that my code doesn’t. I first tried manually specifying encoder settings related to B-frames. This had no effect.
I then tried running both ffmpeg and my utility under gdb and comparing the contents of the AVStream, AVCodecContext, and X264Context prior to opening the encoder and manually setting any fields that appeared different. Even with identical settings, I still only produce I- and P-frames.
Finally, I thought that perhaps the problem was with my timestamp handling. I reworked my test utility to mimic the pipeline used by ffmpeg and to output timestamp debugging output like ffmpeg does. Even with my timestamps identical to ffmpeg’s I still get no B-frames.
At this point I don’t know what else to try. When I run ffmpeg, I run it with the command line below. Note that aside from the "superfast" preset, I pretty much use the default values.
ffmpeg -v debug -i ~/annexb.264 -codec:v libx264 -preset superfast -g 30 -f h264 ./out.264
The code that configures the encoder is listed below. It specifies the "superfast" preset too.
static AVStream *add_video_stream(AVFormatContext *output_ctx, AVCodec **output_codec, enum AVCodecID codec_id)
{
*output_codec = avcodec_find_encoder(codec_id);
if (*output_codec == NULL) {
printf("Could not find encoder for '%s' (%d)\n", avcodec_get_name(codec_id), codec_id);
return NULL;
}
AVStream *output_stream = avformat_new_stream(output_ctx, *output_codec);
if (output_stream == NULL) {
printf("Could not create video stream.\n");
return NULL;
}
output_stream->id = output_ctx->nb_streams - 1;
AVCodecContext *codec_ctx = output_stream->codec;
avcodec_get_context_defaults3(codec_ctx, *output_codec);
codec_ctx->width = 1280;
codec_ctx->height = 720;
codec_ctx->time_base.den = 15000;
codec_ctx->time_base.num = 1001;
/* codec_ctx->gop_size = 30;*/
codec_ctx->pix_fmt = AV_PIX_FMT_YUVJ420P;
// try to force B-frame output
/* codec_ctx->max_b_frames = 3;*/
/* codec_ctx->b_frame_strategy = 2;*/
output_stream->sample_aspect_ratio.num = 1;
output_stream->sample_aspect_ratio.den = 1;
codec_ctx->sample_aspect_ratio.num = 1;
codec_ctx->sample_aspect_ratio.den = 1;
codec_ctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
codec_ctx->bits_per_raw_sample = 8;
if ((output_ctx->oformat->flags & AVFMT_GLOBALHEADER) != 0) {
codec_ctx->flags |= CODEC_FLAG_GLOBAL_HEADER;
}
return output_stream;
}
int main(int argc, char **argv)
{
// ... open input file
avformat_alloc_output_context2(&output_ctx, NULL, "h264", output_path);
if (output_ctx == NULL) {
fprintf(stderr, "Unable to allocate output context.\n");
return 1;
}
AVCodec *output_codec = NULL;
output_stream = add_video_stream(output_ctx, &output_codec, output_ctx->oformat->video_codec);
if (output_stream == NULL) {
fprintf(stderr, "Error adding video stream to output context.\n");
return 1;
}
encode_ctx = output_stream->codec;
// seems to have no effect
#if 0
if (decode_ctx->extradata_size != 0) {
size_t extradata_size = decode_ctx->extradata_size;
printf("extradata_size: %zu\n", extradata_size);
encode_ctx->extradata = av_mallocz(extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
memcpy(encode_ctx->extradata, decode_ctx->extradata, extradata_size);
encode_ctx->extradata_size = extradata_size;
}
#endif // 0
AVDictionary *opts = NULL;
av_dict_set(&opts, "preset", "superfast", 0);
// av_dict_set(&opts, "threads", "auto", 0); // seems to have no effect
ret = avcodec_open2(encode_ctx, output_codec, &opts);
if (ret < 0) {
fprintf(stderr, "Unable to open output video cocec: %s\n", av_err2str(ret));
return 1;
}
// ... decoding/encoding loop, clean up, etc.
return 0;
}My test utility produces the following debug output in which you can see there are no B-frames produced :
[libx264 @ 0x1b8c9c0] using mv_range_thread = 56
[libx264 @ 0x1b8c9c0] using SAR=1/1
[libx264 @ 0x1b8c9c0] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX
[libx264 @ 0x1b8c9c0] profile High, level 3.1
Output #0, h264, to './out.264':
Stream #0:0, 0, 1/90000: Video: h264, yuvj420p, 1280x720 [SAR 1:1 DAR 16:9], 1001/15000, q=-1--1, 90k tbn, 14.99 tbc
<snip>
[libx264 @ 0x1b8c9c0] frame= 0 QP=17.22 NAL=3 Slice:I Poc:0 I:3600 P:0 SKIP:0 size=122837 bytes
[libx264 @ 0x1b8c9c0] frame= 1 QP=18.03 NAL=2 Slice:P Poc:2 I:411 P:1825 SKIP:1364 size=25863 bytes
[libx264 @ 0x1b8c9c0] frame= 2 QP=17.03 NAL=2 Slice:P Poc:4 I:369 P:2159 SKIP:1072 size=37880 bytes
[libx264 @ 0x1b8c9c0] frame= 3 QP=16.90 NAL=2 Slice:P Poc:6 I:498 P:2330 SKIP:772 size=50509 bytes
[libx264 @ 0x1b8c9c0] frame= 4 QP=16.68 NAL=2 Slice:P Poc:8 I:504 P:2233 SKIP:863 size=50791 bytes
[libx264 @ 0x1b8c9c0] frame= 5 QP=16.52 NAL=2 Slice:P Poc:10 I:513 P:2286 SKIP:801 size=51820 bytes
[libx264 @ 0x1b8c9c0] frame= 6 QP=16.49 NAL=2 Slice:P Poc:12 I:461 P:2293 SKIP:846 size=51311 bytes
[libx264 @ 0x1b8c9c0] frame= 7 QP=16.65 NAL=2 Slice:P Poc:14 I:476 P:2287 SKIP:837 size=51196 bytes
[libx264 @ 0x1b8c9c0] frame= 8 QP=16.66 NAL=2 Slice:P Poc:16 I:508 P:2240 SKIP:852 size=51577 bytes
[libx264 @ 0x1b8c9c0] frame= 9 QP=16.55 NAL=2 Slice:P Poc:18 I:477 P:2278 SKIP:845 size=51531 bytes
[libx264 @ 0x1b8c9c0] frame= 10 QP=16.67 NAL=2 Slice:P Poc:20 I:517 P:2233 SKIP:850 size=51946 bytes
<snip>
[libx264 @ 0x1b8c9c0] frame I:7 Avg QP:13.71 size:152207
[libx264 @ 0x1b8c9c0] frame P:190 Avg QP:16.66 size: 50949
[libx264 @ 0x1b8c9c0] mb I I16..4: 27.1% 30.8% 42.1%
[libx264 @ 0x1b8c9c0] mb P I16..4: 6.8% 6.0% 0.8% P16..4: 61.8% 0.0% 0.0% 0.0% 0.0% skip:24.7%
[libx264 @ 0x1b8c9c0] 8x8 transform intra:41.2% inter:86.9%
[libx264 @ 0x1b8c9c0] coded y,uvDC,uvAC intra: 92.2% 28.3% 5.4% inter: 50.3% 1.9% 0.0%
[libx264 @ 0x1b8c9c0] i16 v,h,dc,p: 7% 7% 77% 8%
[libx264 @ 0x1b8c9c0] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 7% 15% 49% 6% 4% 3% 5% 3% 8%
[libx264 @ 0x1b8c9c0] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 19% 25% 24% 6% 7% 4% 6% 3% 6%
[libx264 @ 0x1b8c9c0] i8c dc,h,v,p: 72% 14% 10% 4%
[libx264 @ 0x1b8c9c0] Weighted P-Frames: Y:0.0% UV:0.0%
[libx264 @ 0x1b8c9c0] kb/s:6539.11
</snip></snip>ffmpeg, on the other hand, produces the following output that is almost identical but includes B-frames :
[libx264 @ 0x20b9c40] using mv_range_thread = 56
[libx264 @ 0x20b9c40] using SAR=1/1
[libx264 @ 0x20b9c40] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX
[libx264 @ 0x20b9c40] profile High, level 3.1
[h264 @ 0x20b8160] detected 4 logical cores
Output #0, h264, to './out.264':
Metadata:
encoder : Lavf54.63.104
Stream #0:0, 0, 1/90000: Video: h264, yuvj420p, 1280x720 [SAR 1:1 DAR 16:9], 1001/15000, q=-1--1, 90k tbn, 14.99 tbc
Stream mapping:
Stream #0:0 -> #0:0 (h264 -> libx264)
<snip>
[libx264 @ 0x20b9c40] frame= 0 QP=17.22 NAL=3 Slice:I Poc:0 I:3600 P:0 SKIP:0 size=122835 bytes
[libx264 @ 0x20b9c40] frame= 1 QP=18.75 NAL=2 Slice:P Poc:8 I:984 P:2045 SKIP:571 size=54208 bytes
[libx264 @ 0x20b9c40] frame= 2 QP=19.40 NAL=2 Slice:B Poc:4 I:447 P:1581 SKIP:1572 size=24930 bytes
[libx264 @ 0x20b9c40] frame= 3 QP=19.78 NAL=0 Slice:B Poc:2 I:199 P:1002 SKIP:2399 size=10717 bytes
[libx264 @ 0x20b9c40] frame= 4 QP=20.19 NAL=0 Slice:B Poc:6 I:204 P:1155 SKIP:2241 size=15937 bytes
[libx264 @ 0x20b9c40] frame= 5 QP=18.11 NAL=2 Slice:P Poc:16 I:990 P:2221 SKIP:389 size=64240 bytes
[libx264 @ 0x20b9c40] frame= 6 QP=19.35 NAL=2 Slice:B Poc:12 I:439 P:1784 SKIP:1377 size=34048 bytes
[libx264 @ 0x20b9c40] frame= 7 QP=19.88 NAL=0 Slice:B Poc:10 I:275 P:1035 SKIP:2290 size=16911 bytes
[libx264 @ 0x20b9c40] frame= 8 QP=19.91 NAL=0 Slice:B Poc:14 I:257 P:1270 SKIP:2073 size=19172 bytes
[libx264 @ 0x20b9c40] frame= 9 QP=17.90 NAL=2 Slice:P Poc:24 I:962 P:2204 SKIP:434 size=67439 bytes
[libx264 @ 0x20b9c40] frame= 10 QP=18.84 NAL=2 Slice:B Poc:20 I:474 P:1911 SKIP:1215 size=37742 bytes
<snip>
[libx264 @ 0x20b9c40] frame I:7 Avg QP:15.95 size:130124
[libx264 @ 0x20b9c40] frame P:52 Avg QP:17.78 size: 64787
[libx264 @ 0x20b9c40] frame B:138 Avg QP:19.32 size: 26231
[libx264 @ 0x20b9c40] consecutive B-frames: 6.6% 0.0% 0.0% 93.4%
[libx264 @ 0x20b9c40] mb I I16..4: 30.2% 35.2% 34.6%
[libx264 @ 0x20b9c40] mb P I16..4: 13.9% 11.4% 0.3% P16..4: 60.4% 0.0% 0.0% 0.0% 0.0% skip:13.9%
[libx264 @ 0x20b9c40] mb B I16..4: 5.7% 3.3% 0.0% B16..8: 15.8% 0.0% 0.0% direct:25.7% skip:49.5% L0:43.2% L1:37.3% BI:19.5%
[libx264 @ 0x20b9c40] 8x8 transform intra:39.4% inter:77.2%
[libx264 @ 0x20b9c40] coded y,uvDC,uvAC intra: 90.7% 26.6% 3.0% inter: 34.0% 4.1% 0.0%
[libx264 @ 0x20b9c40] i16 v,h,dc,p: 7% 7% 77% 9%
[libx264 @ 0x20b9c40] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 7% 16% 51% 5% 4% 3% 5% 3% 7%
[libx264 @ 0x20b9c40] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 22% 27% 20% 6% 6% 3% 6% 3% 6%
[libx264 @ 0x20b9c40] i8c dc,h,v,p: 71% 15% 11% 3%
[libx264 @ 0x20b9c40] Weighted P-Frames: Y:0.0% UV:0.0%
[libx264 @ 0x20b9c40] kb/s:4807.16
</snip></snip>I’m sure I’m missing something simple, but I can’t for the life of me see what it is. Any assistance would be greatly appreciated.
-
Piwik 3 Development Update #1 – New UI design, API changes & release date
1er septembre 2016, par Thomas Steur — Community, DevelopmentOver the last months, we have been actively working on the Piwik 3 release and we want to introduce you to the changes that we have done so far. They include a new and modern UI redesign, new widgets for your dashboard, and technical improvements under the hood.
New Piwik 3 UI
Based on Material Design we have revamped the user interface which is now more responsive, more usable and faster. While the UI is not yet finished, we invite you to check it out already and to let us know what you think.
This new Piwik material design is a visual language that synthesizes classic principles of good design with the innovation and possibility of technology and science.
More responsive
Piwik 3 will look and feel much better on your mobile phone and tablet. Many elements have been improved : the menus, the segment editor and dashboard selector, the widgets, the settings pages and most other pages so you can fully experience and enjoy Piwik on any device !
Improved usability
We have updated the menu structure, the dashboard selector as well as the footer in reports to make your life easier when using Piwik. We love to keep these complicated things simple. There are also many other tiny improvements that you will appreciate.
The Zen Mode lets you view in full screen your analytics reports and dashboards. Users love this feature and it can now be accessed by pressing “z” key.
Faster
To make the Piwik interface faster, we have refactored most of our CSS, HTML and JavaScript and moved more and more of our code into the client. As a result, Piwik now needs to reload the page much less often ! For example when you change the date or change the segment, Piwik will now load the reports instantly. To improve performance even further, Piwik will now load multiple reports on a single page in parallel.
Native fonts
Over the last months more and more web services have started using system fonts, and so will Piwik 3. System fonts look better, improve language support and give you a more native, familiar feeling.
For more details and screenshots have a look at the pull request for the Piwik 3 UI update.
New widgets
With the “Latest Piwik Plugin Updates” widget you won’t miss any newly added or updated plugin anymore. This will help you learn about and discover the useful plugins and themes available on the Marketplace.
Super users can now see at a glance the current state of the Piwik system, thanks to the new “System Check” and “System Summary” widgets.
API Changes
Piwik is the leading open analytics platform, highly customisable and extensible thanks to a flexible plugins architecture and a design based on APIs. In this new major Piwik 3 release, we significantly improve the foundation of our open platform and several of its core APIs.
The new Widgets and Reporting API makes it possible to add reports and widgets to any existing reporting page. In the past, reporting pages had to be created manually which was time consuming and it was hard to maintain a consistent look across different reporting pages. Now reporting pages are generated automatically by the Piwik platform.
The Plugin Settings API was changed to improve performance and to let plugin developers customize the Websites Manager. This is one step towards our goal to let users not only manage websites but also mobile apps, cars, coffee machines or any other thing.
To see a full list of changes in the Piwik 3 analytics platform, have a look at the developer changelog.
Developer docs
The Piwik Developer Zone is full of guides and API references to help developers understand, integrate and extend Piwik. As some APIs have changed in the Piwik 3 release it is now possible to select the Piwik version in the top right corner of the developer zone.
We are updating guides for Piwik 3 and added a Piwik 2 -> Piwik 3 Migration Guide for plugin developers. Many other guides were updated such as Menus, Custom Report and Widgets.
Release date
The first Piwik 3 beta release will be available in the next four weeks. Beta testers automatically receive the update if they are subscribed to the “Latest Beta” release channel. The final Piwik 3 release will be ready before the end of the year. If you want to give it a try, you can either use Piwik from Git and check out the “3.x-dev” branch, or download Piwik 3 from GitHub.
Closing thoughts
With faster & more beautiful reports, better APIs and more stability, Piwik 3 is a big step forward for all Piwik users. As our mission is to create, as a community, the leading international open source web analytics platform that gives every user full control of their data, we are very excited to introduce you to this upcoming release.
We now offer Custom Development services if you like to sponsor a new feature or bug fix, or if you have any custom requirements. And if you use Piwik Analytics to grow your business and need quality help, contact the Piwik analytics experts to get started.
Until our next Piwik 3 dev update, Happy analysis !