Recherche avancée

Médias (0)

Mot : - Tags -/tags

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (44)

  • La file d’attente de SPIPmotion

    28 novembre 2010, par

    Une file d’attente stockée dans la base de donnée
    Lors de son installation, SPIPmotion crée une nouvelle table dans la base de donnée intitulée spip_spipmotion_attentes.
    Cette nouvelle table est constituée des champs suivants : id_spipmotion_attente, l’identifiant numérique unique de la tâche à traiter ; id_document, l’identifiant numérique du document original à encoder ; id_objet l’identifiant unique de l’objet auquel le document encodé devra être attaché automatiquement ; objet, le type d’objet auquel (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • La sauvegarde automatique de canaux SPIP

    1er avril 2010, par

    Dans le cadre de la mise en place d’une plateforme ouverte, il est important pour les hébergeurs de pouvoir disposer de sauvegardes assez régulières pour parer à tout problème éventuel.
    Pour réaliser cette tâche on se base sur deux plugins SPIP : Saveauto qui permet une sauvegarde régulière de la base de donnée sous la forme d’un dump mysql (utilisable dans phpmyadmin) mes_fichiers_2 qui permet de réaliser une archive au format zip des données importantes du site (les documents, les éléments (...)

Sur d’autres sites (7765)

  • How (and Why) to Run a Web Accessibility Audit in 2024

    7 mai 2024, par Erin

    When most businesses design their websites, they primarily think about aesthetics, not accessibility. However, not everyone who visits your website has the same abilities or access needs. Eight percent of the US population has visual impairments.

    The last thing you want is to alienate website visitors with a bad experience because your site isn’t up to accessibility standards. (And with growing international regulation, risk fines or lawsuits as a result.)

    A web accessibility audit can help you identify and fix any issues for users with impaired vision, hearing or other physical disabilities. In this article, we’ll cover how to conduct such an audit efficiently for your website in 2024.

    What is a web accessibility audit ?

    A web accessibility audit is a way to evaluate the usability of your website for users with visual, auditory or physical impairments, as well as cognitive disabilities or neurological issues. The goal is to figure out how accessible your website is to each of these affected groups and solve any issues that come up.

    To complete an audit, you use digital tools and various manual accessibility testing processes to ensure your site meets modern web accessibility standards.

    Why is a web accessibility audit a must in 2024 ?

    For far too long, many businesses have not considered the experiences of those with disabilities. The growing frustrations of affected internet users have led to a new focus on web accessibility laws and enforcement.

    Lawsuits related to the ADA (Americans with Disabilities Act) reached all-time highs in 2023 — over 4,500 digital-related lawsuits were filed. The EU has also drawn up the European Accessibility Act (EAC), which goes into effect in June 2025.

    But at the end of the day, it’s not about accessibility legislation. It’s about doing right by people.

    Illustration of a sight-impaired person using text-to-speech to browse a website on a smartphone

    This video by voice actor, YouTuber, and surfer Pete Gustin demonstrates why accessibility measures are so important. If buttons, navigation and content sections aren’t properly labelled, sight-impaired people who rely on speech-to-text to browse the web can’t comfortably interact with your site.

    And you’re worse off for it. You can lose some of your best customers and advocates this way. 

    With stronger enforcement of accessibility regulations in the US and new regulations coming into effect in the EU in 2025, the time to act is now. It’s not enough to “keep accessibility in mind” — you must take concrete steps to improve it.

    Who should lead a web accessibility audit ?

    Ideally, you want to hire a third-party web accessibility expert to lead the audit. They can guide you through multiple stages of manual accessibility testing to ensure your site meets regulations and user needs. 

    Experienced accessibility auditors are familiar with common pitfalls and can help you avoid them. They ensure you meet the legal requirements with proper solutions, not quick fixes.

    If this isn’t an option, find someone with relevant experience within your company. And involve someone with “skin in the game” in the process. Hire someone with visual impairments to usability test your site. Don’t just do automated tests or “put yourself in their shoes.” Make sure the affected users can use your site without issues.

    Automated vs. manual audits and the danger of shortcuts

    While there are automated audits, they only check for the bare minimum :

    • Do your images have alt tags ? (They don’t check if the alt tag is descriptive or just SEO junk text.)
    • Are clickable buttons identified with text for visually impaired users ?
    • Is your text size adjustable ?
    • Are your background and foreground colours accessible for colour-blind users ? Is there a sufficient contrast ratio ?
    Illustration of the results of an automated accessibility test

    They don’t dive into the user journey (and typically can’t access login-locked parts of your site). They can be a good starting point, but it’s a bad idea to rely completely on automated audits.

    They’ll miss more complex issues like :

    • Dynamic content and animated elements or videos that could put people with epilepsy at risk of seizures
    • A navigational flow that is unnecessarily challenging for users with impairments
    • Video elements without proper captions

    So, don’t rely too much on automated tests and audits. Many lawsuits for ADA infractions are against companies that think they’ve already solved the problem. For example, 30% of 2023 lawsuits were against sites that used accessibility overlays.

    Key elements of the Web Content Accessibility Guidelines (WCAG)

    The international standard for web accessibility is the Web Content Accessibility Guidelines (WCAG). In the most recent version, WCAG 2.2, there are new requirements for visual elements and focus and other updates.

    Here’s a quick overview of the key priorities of WCAG :

    Diagram of core WCAG considerations like text scalability, colour choices, accessible navigation, and more

    Perceivable : Any user can read or listen to your site’s content

    The first priority is for any user to be able to perceive the actual content on your site. To be compliant, you need to make these adjustments and more :

    • Use text that scales with browser settings.
    • Avoid relying on colour contrasts to communicate something.
    • Ensure visual elements are explained in text.
    • Offer audio alternatives for things like CAPTCHA.
    • Form fields and interactive elements are properly named.

    Operable : Any user can navigate the site and complete tasks without issue

    The second priority is for users to navigate your website and complete tasks. Here are some of the main considerations for this section :

    • Navigation is possible through keyboard and text-to-speech interfaces.
    • You offer navigation tools to bypass repeated blocks of content.
    • Buttons are properly titled and named.
    • You give impaired users enough time to finish processes without timing out.
    • You allow users to turn off unnecessary animations (and ensure none include three flashes or more within one second).
    • Links have a clear purpose from their alt text (and context).

    Understandable : Any user can read and understand the content

    The third priority is making the content understandable. You need to communicate as simply and as clearly as possible. Here are a few key points :

    • Software can determine the default language of each page.
    • You use a consistent method to explain jargon or difficult terms.
    • You introduce the meaning of unfamiliar abbreviations and acronyms.
    • You offer tools to help users double-check and correct input.
    • The reading grade is not higher than grade 9. If it is, you must offer an alternative text with a lower grade.
    • Use consistent and predictable formatting and navigation.

    This intro to accessibility guidelines should help you see the wide range of potential accessibility issues. Accessibility is not just about screen readers — it’s about ensuring a good user experience for users with a wide range of disabilities.

    Note : If you’re not hiring a third-party expert for the manual accessibility audit, this introduction isn’t enough. You need to familiarise yourself with all 50 success criteria in WCAG 2.2.

    How to do your first web accessibility audit

    Ready to find and fix the accessibility issues across your website ? Follow the steps outlined below to do a successful accessibility audit.

    Start with an automated accessibility test

    To point you in the right direction, start with a digital accessibility checker. There are many free alternatives, including :

    • Accessibility Checker
    • Silktide accessibility checker
    • AAArdvark

    When choosing a tool, check it’s up-to-date with the newest accessibility guidelines. Many accessibility evaluation tools are still based on the WCAG 2.1 version rather than WCAG 2.2.

    The tool will give you a basic evaluation of the accessibility level of your site. A free report can quickly identify common issues with navigation, labelling, colour choices and more. 

    But this is only good as a starting point. Remember that even paid versions of these testing tools are limited and cannot replace a manual audit.

    Look for common issues

    The next step is to manually look for common issues that impact your site’s level of accessibility :

    • Undescriptive alt text
    • Colour combinations (and lack of ability to change background and foreground colours)
    • Unscalable text
    • Different site content sections that are not properly labelled

    The software you use to create your site can lead to many of these issues. Is your content management system (CMS) compliant with ADA or WCAG ? If not, you may want to move to a CMS before continuing the audit.

    Pinpoint customer journeys and test them for accessibility 

    After you’ve fixed common issues, it’s essential to put the actual customer journey to the test. Explore your most important journeys with behavioural analytics tools like session recordings and funnel analysis.

    Analysing funnel reports lets you quickly identify each page that usually contributes to a sale. You will also have an overview of the most popular funnels to evaluate for accessibility.

    If your current web analytics platform doesn’t offer behavioural reports like these, Matomo can help. Our privacy-friendly web analytics solution includes funnel reports, session recordings, A/B testing, form analytics, heatmaps and more.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    If you don’t have the budget to test every page individually, this is the perfect place to start. You want to ensure that users with disabilities have no issues completing the main tasks on your site. 

    Don’t focus solely on your web pages 

    Accessibility barriers can also exist outside of your standard web pages. So ensure that other file formats like PDFs and videos are also accessible. 

    Remember that downloadable materials are also part of your digital experience. Always consider the needs of individuals with disabilities when accessing things like case studies or video tutorials. 

    Highlight high-priority issues in a detailed report

    To complete the audit, you need to summarise and highlight high-priority issues. In a larger company, this will be in the form of a report. W3’s Web Accessibility Initiative offers a free accessibility report template and an online tool to generate a report.

    For smaller teams, it may make sense to input issues directly into the product backlog or a task list. Then, you can tackle the issues, starting with high-priority pages identified earlier in this process.

    Avoid quick fixes and focus on sustainable improvement

    As mentioned, AI-powered overlay solutions aren’t compliant and put you at risk for lawsuits. It’s not enough to install a quick accessibility tool and pat yourself on the back.

    And it’s not just about accessibility compliance. These solutions provide a disjointed experience that alienates potential users. 

    The point of a digital accessibility audit is to identify issues and provide a better experience to all your users. So don’t try to cut corners. Do the work required to implement solutions that work seamlessly for everyone. Invest in a long-term accessibility remediation process.

    Deliver a frictionless experience while gaining insight into your users

    An accessibility audit is crucial to ensure an inclusive experience — that a wide variety of users can read and interact with your site.

    But what about the basic usability of your website ? Are you sure the experience is without friction ? Matomo’s behavioural analytics tools can show how users interact with your website.

    For example, heatmaps can show you where users are clicking — which can help you identify a pattern, like many users mistaking a visual element for a button.

    Plus, our privacy-friendly web analytics are compliant with GDPR, CCPA and other data privacy regulations. That helps protect you against privacy-related lawsuits, just as an accessibility audit protects you against ADA lawsuits.

    And it never hurts that your users know you respect their privacy. Try Matomo free for 21-days. No credit card required.

  • Open Banking Security 101 : Is open banking safe ?

    3 décembre 2024, par Daniel Crough — Banking and Financial Services

    Open banking is changing the financial industry. Statista reports that open banking transactions hit $57 billion worldwide in 2023 and will likely reach $330 billion by 2027. According to ACI, global real-time payment (RTP) transactions are expected to exceed $575 billion by 2028.

    Open banking is changing how banking works, but is it safe ? And what are the data privacy and security implications for global financial service providers ?

    This post explains the essentials of open banking security and addresses critical data protection and compliance questions. We’ll explore how a privacy-first approach to data analytics can help you meet regulatory requirements, build customer trust and ultimately thrive in the open banking market while offering innovative financial products.

     

    Discover trends, strategies, and opportunities to balance compliance and competitiveness.

    What is open banking ?

    Open banking is a system that connects banks, authorised third-party providers and technology, empowering customers to securely share their financial data with other companies. At the same time, it unlocks access to more innovative and personalised financial products and services like spend management solutions, tailored budgeting apps and more convenient payment gateways. 

    With open banking, consumers have greater choice and control over their financial data, ultimately fostering a more competitive financial industry, supporting technological innovation and paving the way for a more customer-centric financial future.

    Imagine offering your clients a service that analyses spending habits across all accounts — no matter the institution — and automatically finds ways to save them money. Envision providing personalised financial advice tailored to individual needs or enabling customers to apply for a mortgage with just a few taps on their phone. That’s the power of open banking.

    Embracing this technology is an opportunity for banks and fintech companies to build new solutions for customers who are eager for a more transparent and personalised digital experience.

    How is open banking different from traditional banking ?

    In traditional banking, consumers’ financial data is locked away and siloed within each bank’s systems, accessible only to the bank and the account holder. While account holders could manually aggregate and share this data, the process is cumbersome and prone to errors.

    With open banking, users can choose what data to share and with whom, allowing trusted third-party providers to access their financial information directly from the source. 

    Side-by-side comparison between open banking and traditional banking showing the flow of financial information between the bank and the user with and without a third party.

    How does open banking work ?

    The technology that makes open banking possible is the application programming interface (API). Think of banking APIs as digital translators for different software systems ; instead of translating languages, they translate data and code.

    The bank creates and publishes APIs that provide secure access to specific types of customer data, like credit card transaction history and account balances. The open banking API acts like a friendly librarian, ready to assist apps in accessing the information they need in a secure and organised way.

    Third-party providers, like fintech companies, use these APIs to build their applications and services. Some tech companies also act as intermediaries between fintechs and banks to simplify connections to multiple APIs simultaneously.

    For example, banks like BBVA (Spain) and Capital One (USA) offer secure API platforms. Fintechs like Plaid and TrueLayer use those banking APIs as a bridge to users’ financial data. This bridge gives other service providers like Venmo, Robinhood and Coinbase access to customer data, allowing them to offer new payment gateways and investment tools that traditional banks don’t provide.

    Is open banking safe for global financial services ?

    Yes, open banking is designed from the ground up to be safe for global financial services.

    Open banking doesn’t make customer financial data publicly available. Instead, it uses a secure, regulated framework for sharing information. This framework relies on strong security measures and regulatory oversight to protect user data and ensure responsible access by authorised third-party providers.

    In the following sections, we’ll explore the key security features and banking regulations that make this technology safe and reliable.

    Regulatory compliance in open banking

    Regulatory oversight is a cornerstone of open banking security.

    In the UK and the EU, strict regulations govern how companies access and use customer data. The revised Payment Services Directive (PSD2) in Europe mandates strong customer authentication and secure communication, promoting a high level of security for open banking services.

    To offer open banking services, companies must register with their respective regulatory bodies and comply with all applicable data protection laws.

    For example, third-party service providers in the UK must be authorised by the Financial Conduct Authority (FCA) and listed on the Financial Services Register. Depending on the service they provide, they must get an Account Information Service Provider (AISP) or a Payment Initiation Service Provider (PISP) license.

    Similar regulations and registries exist across Europe, enforced by the European National Competent Authority, like BaFin in Germany and the ACPR in France.

    In the United States, open banking providers don’t require a special federal license. However, this will soon change, as the U.S. Consumer Financial Protection Bureau (CFPB) unveiled a series of rules on 22 October 2024 to establish a regulatory framework for open banking.

    These regulations ensure that only trusted providers can participate in the open banking ecosystem. Anyone can check if a company is a trusted provider on public databases like the Regulated Providers registry on openbanking.org.uk. While being registered doesn’t guarantee fair play, it adds a layer of safety for consumers and banks.

    Key open banking security features that make it safe for global financial services

    Open banking is built on a foundation of solid security measures. Let’s explore five key features that make it safe and reliable for financial institutions and their customers.

    List of the five most important features that make open banking safe for global finance

    Strong Customer Authentication (SCA)

    Strong Customer Authentication (SCA) is a security principle that protects against unauthorised access to user financial data. It’s a regulated and legally required form of multi-factor authentication (MFA) within the European Economic Area.

    SCA mandates that users verify their identity using at least two of the following three factors :

    • Something they know (a password, PIN, security question, etc.)
    • Something they have (a mobile phone, a hardware token or a bank card)
    • Something they are (a fingerprint, facial recognition or voice recognition)

    This type of authentication helps reduce the risk of fraud and unauthorised transactions.

    API security

    PSD2 regulations mandate that banks provide open APIs, giving consumers the right to use any third-party service provider for their online banking services. According to McKinsey research, this has led to a surge in API adoption within the banking sector, with the largest banks allocating 14% of their IT budget to APIs. 

    To ensure API security, banks and financial service providers implement several measures, including :

    • API gateways, which act as a central point of control for all API traffic, enforcing security policies and preventing unauthorised access
    • API keys and tokens to authenticate and authorise API requests (the equivalent of a library card for apps)
    • Rate limiting to prevent denial-of-service attacks by limiting the number of requests a third-party application can make within a specific timeframe
    • Regular security audits and penetration testing to identify and address potential vulnerabilities in the API infrastructure

    Data minimisation and purpose limitation

    Data minimisation and purpose limitation are fundamental principles of data protection that contribute significantly to open banking safety.

    Data minimisation means third parties will collect and process only the data necessary to provide their service. Purpose limitation requires them to use the collected data only for its original purpose.

    For example, a budgeting app that helps users track their spending only needs access to transaction history and account balances. It doesn’t need access to the user’s full transaction details, investment portfolio or loan applications.

    Limiting the data collected from individual banks significantly reduces the risk of potential misuse or exposure in a data breach.

    Encryption

    Encryption is a security method that protects data in transit and at rest. It scrambles data into an unreadable format, making it useless to anyone without the decryption key.

    In open banking, encryption protects users’ data as it travels between the bank and the third-party provider’s systems via the API. It also protects data stored on the bank’s and the provider’s servers. Encryption ensures that even if a breach occurs, user data remains confidential.

    Explicit consent

    In open banking, before a third-party provider can access user data, it must first inform the user what data it will pull and why. The customer must then give their explicit consent to the third party collecting and processing that data.

    This transparency and control are essential for building trust and ensuring customers feel safe using third-party services.

    But beyond that, from the bank’s perspective, explicit customer consent is also vital for compliance with GDPR and other data protection regulations. It can also help limit the bank’s liability in case of a data breach.

    Explicit consent goes beyond sharing financial data. It’s also part of new data privacy regulations around tracking user behaviour online. This is where an ethical web analytics solution like Matomo can be invaluable. Matomo fully complies with some of the world’s strictest privacy regulations, like GDPR, lGPD and HIPAA. With Matomo, you get peace of mind knowing you can continue gathering valuable insights to improve your services and user experience while respecting user privacy and adhering to regulations.

    Risks of open banking for global financial services

    While open banking offers significant benefits, it’s crucial to acknowledge the associated risks. Understanding these risks allows financial institutions to implement safeguards and protect themselves and their customers.

    List of the three key risks that banks should always keep in mind.

    Risk of data breaches

    By its nature, open banking is like adding more doors and windows to your house. It’s convenient but also gives burglars more ways to break in.

    Open banking increases what cybersecurity professionals call the “attack surface,” or the number of potential points of vulnerability for hackers to steal financial data.

    Data breaches are a serious threat to banks and financial institutions. According to IBM’s 2024 Cost of a Data Breach Report, each breach costs companies in the US an average of $4.88 million. Therefore, banks and fintechs must prioritise strong security measures and data protection protocols to mitigate these risks.

    Risk of third-party access

    By definition, open banking involves granting third-party providers access to customer financial information. This introduces a level of risk outside the bank’s direct control.

    Financial institutions must carefully vet third-party providers, ensuring they meet stringent security standards and comply with all relevant data protection regulations.

    Risk of user account takeover

    Open banking can increase the risk of user account takeover if adequate security measures are not in place. For example, if a malicious third-party provider gains unauthorised access to a user’s bank login details, they could take control of the user’s account and make fraudulent bank transactions.

    A proactive approach to security, continuous monitoring and a commitment to evolving best practices and security protocols are crucial for navigating the open banking landscape.

    Open banking and data analytics : A balancing act for financial institutions

    The additional data exchanged through open banking unveils deeper insights into customer behaviour and preferences. This data can fuel innovation, enabling the development of personalised products and services and improved risk management strategies.

    However, using this data responsibly requires a careful balancing act.

    Too much reliance on data without proper safeguards can erode trust and invite regulatory issues. The opposite can stifle innovation and limit the technology’s potential.

    Matomo Analytics derisks web and app environments by giving full control over what data is tracked and how it is stored. The platform prioritises user data privacy and security while providing valuable data and analytics that will be familiar to anyone who has used Google Analytics.

    Open banking, data privacy and AI

    The future of open banking is entangled with emerging technologies like artificial intelligence (AI) and machine learning. These technologies significantly enhance open banking analytics, personalise services, and automate financial tasks.

    Several banks, credit unions and financial service providers are already exploring AI’s potential in open banking. For example, HSBC developed the AI-enabled FX Prompt in 2023 to improve forex trading. The bank processed 823 million client API calls, many of which were open banking.

    However, using AI in open banking raises important data privacy considerations. As the American Bar Association highlights, balancing personalisation with responsible AI use is crucial for open banking’s future. Financial institutions must ensure that AI-driven solutions are developed and implemented ethically, respecting customer privacy and data protection.

    Conclusion

    Open banking presents a significant opportunity for innovation and growth in the financial services industry. While it’s important to acknowledge the associated risks, security measures like explicit customer consent, encryption and regulatory frameworks make open banking a safe and reliable system for banks and their clients.

    Financial service providers must adopt a multifaceted approach to data privacy, implementing privacy-centred solutions across all aspects of their business, from open banking to online services and web analytics.

    By prioritising data privacy and security, financial institutions can build customer trust, unlock the full potential of open banking and thrive in today’s changing financial environment.

  • FFMPEG error submitting a packet to the muxer

    27 juillet 2024, par Badgio10177

    I am attempting to stream video frames to a RTSP server using FFMPEG. I instantiate an ffmpeg pipeline in c++. There are times when the process works perfectly and other times I get the error Error submitting a packet to the muxer : Broken pipe. Error muxing a packet. What uis strange is that there are times when the stream works and times when it does not which leads me to believe that the FFMPEG parameters that I set are not necessarily incorrect.

    


    I am using a mex function within MATLAB to take in a frame and stream it.

    


    // Global variables&#xA;FILE* openPipeLine = NULL;&#xA;&#xA;void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[], int frameWidth, int frameHeight)&#xA;{&#xA;&#xA;    Ptr<mat> inputFrame = ocvMxArrayToImage_uint8(prhs[0], true);&#xA;    Mat processedFrame = *inputFrame;&#xA;&#xA;    // Check if FFMPEG process has been started&#xA;    if (!openPipeLine)&#xA;    {&#xA;        openPipeLine = _popen("ffmpeg -report -f rawvideo -r 10 -video_size 1280x720 -pixel_format bgr24 -i pipe: -vcodec libx264 -pix_fmt yuv420p -f rtsp rtsp://localhost:8554/mystream 2> log.txt", "wb");&#xA;&#xA;    }&#xA;&#xA;    // Write the frame data to the pipeline&#xA;    fwrite(processedFrame.data, 1, frameWidth * frameHeight * 3, openPipeLine);&#xA;    mexAtExit(exitFcn);&#xA;}&#xA;</mat>

    &#xA;

    Below is the full report from the ffmpeg process. Do my operating system variables change from time to time which cause the stream to work at times and break at others ? I am using Windows 10.

    &#xA;

    Log level: 48&#xA;Command line:&#xA;ffmpeg -report -f rawvideo -r 10 -video_size 1280x720 -pixel_format bgr24 -i pipe: -vcodec libx264 -pix_fmt yuv420p -f rtsp rtsp://localhost:8554/mystream&#xA;&#xA;  built with gcc 12.2.0 (Rev10, Built by MSYS2 project)&#xA;  configuration: --enable-gpl --enable-version3 --enable-static --disable-w32threads --disable-autodetect --enable-fontconfig --enable-iconv --enable-gnutls --enable-libxml2 --enable-gmp --enable-bzlib --enable-lzma --enable-libsnappy --enable-zlib --enable-librist --enable-libsrt --enable-libssh --enable-libzmq --enable-avisynth --enable-libbluray --enable-libcaca --enable-sdl2 --enable-libaribb24 --enable-libaribcaption --enable-libdav1d --enable-libdavs2 --enable-libuavs3d --enable-libzvbi --enable-librav1e --enable-libsvtav1 --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxavs2 --enable-libxvid --enable-libaom --enable-libjxl --enable-libopenjpeg --enable-libvpx --enable-mediafoundation --enable-libass --enable-frei0r --enable-libfreetype --enable-libfribidi --enable-libharfbuzz --enable-liblensfun --enable-libvidstab --enable-libvmaf --enable-libzimg --enable-amf --enable-cuda-llvm --enable-cuvid --enable-ffnvcodec --enable-nvdec --enable-nvenc --enable-d3d11va --enable-dxva2 --enable-lib  libavutil      58. 16.101 / 58. 16.101&#xA;  libavcodec     60. 23.100 / 60. 23.100&#xA;  libavformat    60. 10.100 / 60. 10.100&#xA;  libavdevice    60.  2.101 / 60.  2.101&#xA;  libavfilter     9. 11.100 /  9. 11.100&#xA;  libswscale      7.  3.100 /  7.  3.100&#xA;  libswresample   4. 11.100 /  4. 11.100&#xA;  libpostproc    57.  2.100 / 57.  2.100&#xA;Splitting the commandline.&#xA;&#xA;Successfully parsed a group of options.&#xA;Opening an input file: pipe:.&#xA;[rawvideo @ 00000182dba5efc0] Opening &#x27;pipe:&#x27; for reading&#xA;[pipe @ 00000182dba611c0] Setting default whitelist &#x27;crypto,data&#x27;&#xA;[rawvideo @ 00000182dba5efc0] Before avformat_find_stream_info() pos: 0 bytes read:65536 seeks:0 nb_streams:1&#xA;[rawvideo @ 00000182dba5efc0] All info found&#xA;[rawvideo @ 00000182dba5efc0] After avformat_find_stream_info() pos: 2764800 bytes read:2764800 seeks:0 frames:1&#xA;Input #0, rawvideo, from &#x27;pipe:&#x27;:&#xA;  Duration: N/A, start: 0.000000, bitrate: 221184 kb/s&#xA;  Stream #0:0, 1, 1/10: Video: rawvideo (BGR[24] / 0x18524742), bgr24, 1280x720, 221184 kb/s, 10 tbr, 10 tbn&#xA;Successfully opened the file.&#xA;Parsing a group of options: output url rtsp://192.168.0.2:8554/mystream.&#xA;Applying option vcodec (force video codec (&#x27;copy&#x27; to copy stream)) with argument libx264.&#xA;Applying option pix_fmt (set pixel format) with argument yuv420p.&#xA;Applying option f (force format) with argument rtsp.&#xA;Successfully parsed a group of options.&#xA;Opening an output file: rtsp://192.168.0.2:8554/mystream.&#xA;[out#0/rtsp @ 00000182dba72c00] No explicit maps, mapping streams automatically...&#xA;[vost#0:0/libx264 @ 00000182dba75cc0] Created video stream from input stream 0:0&#xA;Successfully opened the file.&#xA;Stream mapping:&#xA;  Stream #0:0 -> #0:0 (rawvideo (native) -> h264 (libx264))&#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;detected 16 logical cores&#xA;[graph 0 input from stream 0:0 @ 00000182dba86180] Setting &#x27;video_size&#x27; to value &#x27;1280x720&#x27;&#xA;[graph 0 input from stream 0:0 @ 00000182dba86180] Setting &#x27;pix_fmt&#x27; to value &#x27;3&#x27;&#xA;[graph 0 input from stream 0:0 @ 00000182dba86180] Setting &#x27;time_base&#x27; to value &#x27;1/10&#x27;&#xA;[graph 0 input from stream 0:0 @ 00000182dba86180] Setting &#x27;pixel_aspect&#x27; to value &#x27;0/1&#x27;&#xA;[graph 0 input from stream 0:0 @ 00000182dba86180] Setting &#x27;frame_rate&#x27; to value &#x27;10/1&#x27;&#xA;[graph 0 input from stream 0:0 @ 00000182dba86180] w:1280 h:720 pixfmt:bgr24 tb:1/10 fr:10/1 sar:0/1&#xA;[format @ 00000182dba86540] Setting &#x27;pix_fmts&#x27; to value &#x27;yuv420p&#x27;&#xA;[auto_scale_0 @ 00000182dba869c0] w:iw h:ih flags:&#x27;&#x27; interl:0&#xA;[format @ 00000182dba86540] auto-inserting filter &#x27;auto_scale_0&#x27; between the filter &#x27;Parsed_null_0&#x27; and the filter &#x27;format&#x27;&#xA;[AVFilterGraph @ 00000182dba49040] query_formats: 4 queried, 2 merged, 1 already done, 0 delayed&#xA;[auto_scale_0 @ 00000182dba869c0] w:1280 h:720 fmt:bgr24 sar:0/1 -> w:1280 h:720 fmt:yuv420p sar:0/1 flags:0x00000004&#xA;[libx264 @ 00000182dba76080] using mv_range_thread = 24&#xA;[libx264 @ 00000182dba76080] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX FMA3 BMI2 AVX2 AVX512&#xA;[libx264 @ 00000182dba76080] profile High, level 3.1, 4:2:0, 8-bit&#xA;[libx264 @ 00000182dba76080] 264 - core 164 r3107 a8b68eb - H.264/MPEG-4 AVC codec - Copyleft 2003-2023 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=22 lookahead_threads=3 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=10 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00&#xA;[tcp @ 00000182dc5ce480] No default whitelist set&#xA;[tcp @ 00000182dc5ce480] Original list of addresses:&#xA;[tcp @ 00000182dc5ce480] Address 192.168.0.2 port 8554&#xA;[tcp @ 00000182dc5ce480] Interleaved list of addresses:&#xA;[tcp @ 00000182dc5ce480] Address 192.168.0.2 port 8554&#xA;[tcp @ 00000182dc5ce480] Starting connection attempt to 192.168.0.2 port 8554&#xA;[tcp @ 00000182dc5ce480] Successfully connected to 192.168.0.2 port 8554&#xA;[rtsp @ 00000182dba72d00] SDP:&#xA;v=0&#xA;&#xA;o=- 0 0 IN IP4 127.0.0.1&#xA;&#xA;s=No Name&#xA;&#xA;c=IN IP4 192.168.0.2&#xA;&#xA;t=0 0&#xA;&#xA;a=tool:libavformat 60.10.100&#xA;&#xA;m=video 0 RTP/AVP 96&#xA;&#xA;a=rtpmap:96 H264/90000&#xA;&#xA;a=fmtp:96 packetization-mode=1; sprop-parameter-sets=Z2QAH6zZQFAFuhAAAAMAEAAAAwFA8YMZYA==,aOvjyyLA; profile-level-id=64001F&#xA;&#xA;a=control:streamid=0&#xA;&#xA;&#xA;[rtp @ 00000182dc5cd040] No default whitelist set&#xA;[udp @ 00000182dba4b140] No default whitelist set&#xA;[udp @ 00000182dba4b140] end receive buffer size reported is 393216&#xA;[udp @ 00000182dc9bf040] No default whitelist set&#xA;[udp @ 00000182dc9bf040] end receive buffer size reported is 393216&#xA;Output #0, rtsp, to &#x27;rtsp://192.168.0.2:8554/mystream&#x27;:&#xA;  Metadata:&#xA;    encoder         : Lavf60.10.100&#xA;  Stream #0:0, 0, 1/90000: Video: h264, yuv420p(tv, progressive), 1280x720, q=2-31, 10 fps, 90k tbn&#xA;    Metadata:&#xA;      encoder         : Lavc60.23.100 libx264&#xA;    Side data:&#xA;      cpb: bitrate max/min/avg: 0/0/0 buffer size: 0 vbv_delay: N/A&#xA;frame=    0 fps=0.0 q=0.0 size=       0kB time=N/A bitrate=N/A speed=N/A    &#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;frame=    0 fps=0.0 q=0.0 size=       0kB time=N/A bitrate=N/A speed=N/A    &#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;frame=    0 fps=0.0 q=0.0 size=       0kB time=N/A bitrate=N/A speed=N/A    &#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840   &#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;[libx264 @ 00000182dba76080] frame=   0 QP=21.34 NAL=3 Slice:I Poc:0   I:3600 P:0    SKIP:0    size=135901 bytes&#xA;frame=    0 fps=0.0 q=25.0 size=       0kB time=-00:00:00.20 bitrate=  -0.0kbits/s speed=N/A    &#xA;[vost#0:0/libx264 @ 00000182dba75cc0] Error submitting a packet to the muxer: Broken pipe&#xA;[out#0/rtsp @ 00000182dba72c00] Error muxing a packet&#xA;[out#0/rtsp @ 00000182dba72c00] Terminating muxer thread&#xA;[rawvideo @ 00000182dba72700] PACKET SIZE: 2764800, STRIDE: 3840&#xA;[libx264 @ 00000182dba76080] frame=   1 QP=18.29 NAL=2 Slice:P Poc:2   I:2662 P:866  SKIP:72   size=54835 bytes&#xA;frame=    1 fps=0.0 q=25.0 size=N/A time=-00:00:00.10 bitrate=N/A speed=N/A    &#xA;No more output streams to write to, finishing.&#xA;&#xA;Conversion failed!&#xA;&#xA;

    &#xA;