
Recherche avancée
Médias (91)
-
DJ Z-trip - Victory Lap : The Obama Mix Pt. 2
15 septembre 2011
Mis à jour : Avril 2013
Langue : English
Type : Audio
-
Matmos - Action at a Distance
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
DJ Dolores - Oslodum 2004 (includes (cc) sample of “Oslodum” by Gilberto Gil)
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Danger Mouse & Jemini - What U Sittin’ On ? (starring Cee Lo and Tha Alkaholiks)
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
Cornelius - Wataridori 2
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
-
The Rapture - Sister Saviour (Blackstrobe Remix)
15 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Audio
Autres articles (100)
-
MediaSPIP 0.1 Beta version
25 avril 2011, parMediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
The zip file provided here only contains the sources of MediaSPIP in its standalone version.
To get a working installation, you must manually install all-software dependencies on the server.
If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...) -
MediaSPIP version 0.1 Beta
16 avril 2011, parMediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...) -
Amélioration de la version de base
13 septembre 2013Jolie sélection multiple
Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)
Sur d’autres sites (13801)
-
Problems with Python's azure.cognitiveservices.speech when installing together with FFmpeg in a Linux web app
15 mai 2024, par Kakobo kakoboI need some help.
I'm building an web app that takes any audio format, converts into a .wav file and then passes it to 'azure.cognitiveservices.speech' for transcription.I'm building the web app via a container Dockerfile as I need to install ffmpeg to be able to convert non ".wav" audio files to ".wav" (as azure speech services only process wav files). For some odd reason, the 'speechsdk' class of 'azure.cognitiveservices.speech' fails to work when I install ffmpeg in the web app. The class works perfectly fine when I install it without ffpmeg or when i build and run the container in my machine.


I have placed debug print statements in the code. I can see the class initiating, for some reason it does not buffer in the same when when running it locally in my machine. The routine simply stops without any reason.


Has anybody experienced a similar issue with azure.cognitiveservices.speech conflicting with ffmpeg ?


Here's my Dockerfile :


# Use an official Python runtime as a parent imageFROM python:3.11-slim

#Version RunRUN echo "Version Run 1..."

Install ffmpeg

RUN apt-get update && apt-get install -y ffmpeg && # Ensure ffmpeg is executablechmod a+rx /usr/bin/ffmpeg && # Clean up the apt cache by removing /var/lib/apt/lists saves spaceapt-get clean && rm -rf /var/lib/apt/lists/*

//Set the working directory in the container

WORKDIR /app

//Copy the current directory contents into the container at /app

COPY . /app

//Install any needed packages specified in requirements.txt

RUN pip install --no-cache-dir -r requirements.txt

//Make port 80 available to the world outside this container

EXPOSE 8000

//Define environment variable

ENV NAME World

//Run main.py when the container launches

CMD ["streamlit", "run", "main.py", "--server.port", "8000", "--server.address", "0.0.0.0"]`and here's my python code:



def transcribe_audio_continuous_old(temp_dir, audio_file, language):
 speech_key = azure_speech_key
 service_region = azure_speech_region

 time.sleep(5)
 print(f"DEBUG TIME BEFORE speechconfig")

 ran = generate_random_string(length=5)
 temp_file = f"transcript_key_{ran}.txt"
 output_text_file = os.path.join(temp_dir, temp_file)
 speech_recognition_language = set_language_to_speech_code(language)
 
 speech_config = speechsdk.SpeechConfig(subscription=speech_key, region=service_region)
 speech_config.speech_recognition_language = speech_recognition_language
 audio_input = speechsdk.AudioConfig(filename=os.path.join(temp_dir, audio_file))
 
 speech_recognizer = speechsdk.SpeechRecognizer(speech_config=speech_config, audio_config=audio_input, language=speech_recognition_language)
 done = False
 transcript_contents = ""

 time.sleep(5)
 print(f"DEBUG TIME AFTER speechconfig")
 print(f"DEBUG FIle about to be passed {audio_file}")

 try:
 with open(output_text_file, "w", encoding=encoding) as file:
 def recognized_callback(evt):
 print("Start continuous recognition callback.")
 print(f"Recognized: {evt.result.text}")
 file.write(evt.result.text + "\n")
 nonlocal transcript_contents
 transcript_contents += evt.result.text + "\n"

 def stop_cb(evt):
 print("Stopping continuous recognition callback.")
 print(f"Event type: {evt}")
 speech_recognizer.stop_continuous_recognition()
 nonlocal done
 done = True
 
 def canceled_cb(evt):
 print(f"Recognition canceled: {evt.reason}")
 if evt.reason == speechsdk.CancellationReason.Error:
 print(f"Cancellation error: {evt.error_details}")
 nonlocal done
 done = True

 speech_recognizer.recognized.connect(recognized_callback)
 speech_recognizer.session_stopped.connect(stop_cb)
 speech_recognizer.canceled.connect(canceled_cb)

 speech_recognizer.start_continuous_recognition()
 while not done:
 time.sleep(1)
 print("DEBUG LOOPING TRANSCRIPT")

 except Exception as e:
 print(f"An error occurred: {e}")

 print("DEBUG DONE TRANSCRIPT")

 return temp_file, transcript_contents



The transcript this callback works fine locally, or when installed without ffmpeg in the linux web app. Not sure why it conflicts with ffmpeg when installed via container dockerfile. The code section that fails can me found on note #NOTE DEBUG"


-
Rails 5 - Concurrent large Video uploads using Carrierwave eats up the server memory/space
22 mars 2020, par MilindI have a working Rails 5 apps using Reactjs for frontend and React dropzone uploader to upload video files using carrierwave.
So far, what is working great is listed below -
- User can upload videos and videos are encoded based on the selection made by user - HLS or MPEG-DASH for online streaming.
- Once the video is uploaded on the server, it starts streaming it by :-
- FIRST,copying video on
/tmp
folder. - Running a bash script that uses
ffmpeg
to transcode uploaded video using predefined commands to produce new fragments of videos inside/tmp
folder. - Once the background job is done, all the videos are uploaded on AWS S3, which is how the default
carrierwave
works
- FIRST,copying video on
- So, when multiple videos are uploaded, they are all copied in /tmp folder and then transcoded and eventually uploaded to
S3
.
My questions, where i am looking some help are listed below -
1- The above process is good for small videos, BUT what if there are many concurrent users uploading 2GB of videos ? I know this will kill my server as my
/tmp
folder will keep on increasing and consume all the memory, making it to die hard.How can I allow concurrent videos to upload videos without effecting my server’s memory consumption ?2- Is there a way where I can directly upload the videos on AWS-S3 first, and then use one more proxy server/child application to encode videos from S3, download it to the child server, convert it and again upload it to the destination ? but this is almost the same but doing it on cloud, where memory consumption can be on-demand but will be not cost-effective.
3- Is there some easy and cost-effective way by which I can upload large videos, transcode them and upload it to AWS S3, without effecting my server memory. Am i missing some technical architecture here.
4- How Youtube/Netflix works, I know they do the same thing in a smart way but can someone help me to improve this ?
Thanks in advance.
-
How to stream to the stream name come in response from Youtube livestream api
7 décembre 2018, par Anirudha GuptaI am calling this API https://developers.google.com/youtube/v3/live/docs/liveStreams/insert ? to get stream name from Livestream API
{
"kind": "youtube#liveStream",
"etag": "\"etag"",
"id": "-ABa1o",
"snippet": {
"publishedAt": "2018-12-07T05:41:12.000Z",
"channelId": "UC-
"title": "Hello World",
"description": "Snippet description of testing",
"isDefaultStream": false
},
"cdn": {
"format": "360p",
"ingestionType": "rtmp",
"ingestionInfo": {
"streamName": "9qq0-ct85-ctub-",
"ingestionAddress": "rtmp://a.rtmp.youtube.com/live2",
"backupIngestionAddress": "rtmp://b.rtmp.youtube.com/live2?backup=1"
},
"resolution": "360p",
"frameRate": "30fps"
},
"status": {
"streamStatus": "ready",
"healthStatus": {
"status": "noData"
}
},
"contentDetails": {
"closedCaptionsIngestionUrl": "http://upload.youtube.com/closedcaption?cid=9qq0-ct85-ctub-",
"isReusable": true
}
}I see a response like this, When I use OBS to stream to this RMTP URL it doesn’t have the title I set in the stream as you can see come in response. I am getting stream name but not sure if I do it correctly.
If I call the path as
rtmp://a.rtmp.youtube.com/live2/steamnamefromurl/mykey
it’s work but not have the title I set by call API. Anyone please check the page and help what I am going wrong. What I am looking for is get the title and description set for stream, or verified that I am doing it correctly.