Recherche avancée

Médias (0)

Mot : - Tags -/configuration

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (65)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

  • MediaSPIP Player : les contrôles

    26 mai 2010, par

    Les contrôles à la souris du lecteur
    En plus des actions au click sur les boutons visibles de l’interface du lecteur, il est également possible d’effectuer d’autres actions grâce à la souris : Click : en cliquant sur la vidéo ou sur le logo du son, celui ci se mettra en lecture ou en pause en fonction de son état actuel ; Molette (roulement) : en plaçant la souris sur l’espace utilisé par le média (hover), la molette de la souris n’exerce plus l’effet habituel de scroll de la page, mais diminue ou (...)

  • Emballe Médias : Mettre en ligne simplement des documents

    29 octobre 2010, par

    Le plugin emballe médias a été développé principalement pour la distribution mediaSPIP mais est également utilisé dans d’autres projets proches comme géodiversité par exemple. Plugins nécessaires et compatibles
    Pour fonctionner ce plugin nécessite que d’autres plugins soient installés : CFG Saisies SPIP Bonux Diogène swfupload jqueryui
    D’autres plugins peuvent être utilisés en complément afin d’améliorer ses capacités : Ancres douces Légendes photo_infos spipmotion (...)

Sur d’autres sites (6067)

  • Who Invented FLIC ?

    26 mai 2011, par Multimedia Mike — Multimedia History

    I have been reading through “All Your Base Are Belong To Us : How 50 Years of Video Games Conquered Pop Culture” by Harold Goldberg. Despite the title, Zero Wing has yet to be mentioned (I’m about halfway done).



    I just made it through the chapter describing early breakthrough CD-ROM games, including Myst, The 7th Guest, and The 11th Hour. Some interesting tidbits :

    The 7th Guest
    Of course, Graeme Devine created a new FMV format (called VDX, documented here) for The 7th Guest. The player was apparently called PLAY and the book claims that Autodesk was so impressed by the technology that it licensed the player for use in its own products. When I think of an Autodesk multimedia format, I think of FLIC. The VDX coding format doesn’t look too much like FLIC, per my reading.

    Here’s the relevant passage (pp 118-119) :

    Devine began working on creating software within the CD-ROM disk that would play full-motion video. Within days he had a robust but small ninety-kilobyte player called PLAY that was so good, it was licensed by Autodesk, the makers of the best 3-D animation program at the time. Then Devine figured out a way to compress the huge video files so that they would easily fit on two CD-ROMs.

    Googling for “autodesk trilobyte play program” (Trilobyte was the company behind 7th Guest) led me to this readme file for a program called PLAY73 (hosted at Jason Scott’s massive CD-ROM archive, and it’s on a disc that, incidentally, I donated to the archive ; so, let’s here it for Jason’s tireless archival efforts ! And for Google’s remarkable indexing prowess). The file — dated September 10, 1991 — mentions that it’s a FLICK player, copyright Trilobyte software.



    However, it also mentions being a Groovie Player. Based on ScummVM’s reimplementation of the VDX format, Groovie might refer to the engine behind The 7th Guest.

    So now I’m really interested : Did Graeme Devine create the FLIC file format ? Multimedia nerds want to know !

    I guess not. Thanks to Jim Leonard for digging up this item : “I developed the flic file format for the Autodesk Animator.” Jim Kent, Dr. Dobbs Magazine, March 1993.

    The PLAY73 changelog reveals something from the bad old days of DOS/PC programming : The necessity of writing graphics drivers for 1/2 dozen different video adapters. The PLAY73 readme file also has some vintage contact address for Graeme Devine ; remember when addresses looked like these ?

    If you have any comments, please send them to :
    	Compuserve : 72330,3276
    	Genie : G.DEVINE
    	Internet : 72330,3276@compuserve.com
    

    The 11th Hour
    The book didn’t really add anything I didn’t already know regarding the compression format (RoQ) used in 11th Hour. I already knew how hard Devine worked at it. This book took pains to emphasize the emotional toll taken on the format’s creator.

    I wonder if he would be comforted to know that, more than 15 years later, people are still finding ways to use the format.

  • Metal Gear Solid VP3 Easter Egg

    4 août 2011, par Multimedia Mike — Game Hacking

    Metal Gear Solid : The Twin Snakes for the Nintendo GameCube is very heavy on the cutscenes. Most of them are animated in real-time but there are a bunch of clips — normally of a more photo-realistic nature — that the developers needed to compress using a conventional video codec. What did they decide to use for this task ? On2 VP3 (forerunner of Theora) in a custom transport format. This is only the second game I have seen in the wild that uses pure On2 VP3 (first was a horse game). Reimar and I sorted out most of the details sometime ago. I sat down today and wrote a FFmpeg / Libav demuxer for the format, mostly to prove to myself that I still could.

    Things went pretty smoothly. We suspected that there was an integer field that indicated the frame rate, but 18 fps is a bit strange. I kept fixating on a header field that read 0x41F00000. Where have I seen that number before ? Oh, of course — it’s the number 30.0 expressed as an IEEE 32-bit float. The 4XM format pulled the same trick.

    Hexadecimal Easter Egg
    I know I finished the game years ago but I really can’t recall any of the clips present in the samples directory. The file mgs1-60.vp3 contains a computer screen granting the player access and illustrates this with a hexdump. It looks something like this :



    Funny, there are only 22 bytes on a line when there should be 32 according to the offsets. But, leave it to me to try to figure out what the file type is, regardless. I squinted and copied the first 22 bytes into a file :

     1F 8B 08 00   85 E2 17 38   00 03 EC 3A   0D 78 54 D5
     38 00 03 EC   3A 0D
    

    And the answer to the big question :

    $ file mgsfile
    mgsfile : gzip compressed data, from Unix, last modified : Wed Oct 27 22:43:33 1999
    

    A gzip’d file from 1999. I don’t know why I find this stuff so interesting, but I do. I guess it’s no more and less strange than writing playback systems like this.

  • Revisiting Nosefart and Discovering GME

    30 mai 2011, par Multimedia Mike — Game Hacking

    I found the following screenshot buried deep in an old directory structure of mine :



    I tried to recall how this screenshot came to exist. Had I actually created a functional KDE frontend to Nosefart yet neglected to release it ? I think it’s more likely that I used some designer tool (possibly KDevelop) to prototype a frontend. This would have been sometime in 2000.

    However, this screenshot prompted me to revisit Nosefart.

    Nosefart Background
    Nosefart is a program that can play Nintendo Sound Format (NSF) files. NSF files are files containing components that were surgically separated from Nintendo Entertainment System (NES) ROM dumps. These components contain the music playback engines for various games. An NSF player is a stripped down emulation system that can simulate the NES6502 CPU along with the custom hardware (2 square waves, 1 triangle wave, 1 noise generator, and 1 limited digital channel).

    Nosefart was written by Matt Conte and eventually imported into a Sourceforge project, though it has not seen any development since then. The distribution contains standalone command line players for Linux and DOS, a GTK frontend for the Linux command line version, and plugins for Winamp, XMMS, and CL-Amp.

    The Sourceforge project page notes that Nosefart is also part of XBMC. Let the record show that Nosefart is also incorporated into xine (I did that in 2002, I think).

    Upgrading the API
    When I tried running the command line version of Nosefart under Linux, I hit hard against the legacy audio API : OSS. Remember that ?

    In fairly short order, I was able to upgrade the CL program to use PulseAudio. The program is not especially sophisticated. It’s a single-threaded affair which checks for a keypress, processes an audio frame, and sends the frame out to the OSS file interface. All that was needed was to rewrite open_hardware() and close_hardware() for PA and then replace the write statement in play(). The only quirk that stood out is that including <pulse/pulseaudio.h> is insufficient for programming PA’s simple API. <pulse/simple.h> must be included separately.

    For extra credit, I adapted the program to ALSA. The program uses the most simplistic audio output API possible — just keep filling a buffer and sending it out to the DAC.

    Discovering GME
    I’m not sure what to do with the the program now since, during my research to attempt to bring Nosefart up to date, I became aware of a software library named Game Music Emu, or GME. It’s a pure C++ library that can essentially play any classic video game format you can possible name. Wow. A lot can happen in 10 years when you’re not paying attention.

    It’s such a well-written library that I didn’t need any tutorial or documentation to come up to speed. Just a quick read of the main gme.h header library enabled me in short order to whip up a quick C program that could play NSF and SPC files. Path of least resistance : Client program asks library to open a hardcoded file, synthesize 10 seconds of audio, and dump it into a file ; ask the FLAC command line program to transcode raw data to .flac file ; use ffplay to verify the results.

    I might develop some other uses for this library.