Recherche avancée

Médias (0)

Mot : - Tags -/xmlrpc

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (71)

  • Configurer la prise en compte des langues

    15 novembre 2010, par

    Accéder à la configuration et ajouter des langues prises en compte
    Afin de configurer la prise en compte de nouvelles langues, il est nécessaire de se rendre dans la partie "Administrer" du site.
    De là, dans le menu de navigation, vous pouvez accéder à une partie "Gestion des langues" permettant d’activer la prise en compte de nouvelles langues.
    Chaque nouvelle langue ajoutée reste désactivable tant qu’aucun objet n’est créé dans cette langue. Dans ce cas, elle devient grisée dans la configuration et (...)

  • Websites made ​​with MediaSPIP

    2 mai 2011, par

    This page lists some websites based on MediaSPIP.

  • Support de tous types de médias

    10 avril 2011

    Contrairement à beaucoup de logiciels et autres plate-formes modernes de partage de documents, MediaSPIP a l’ambition de gérer un maximum de formats de documents différents qu’ils soient de type : images (png, gif, jpg, bmp et autres...) ; audio (MP3, Ogg, Wav et autres...) ; vidéo (Avi, MP4, Ogv, mpg, mov, wmv et autres...) ; contenu textuel, code ou autres (open office, microsoft office (tableur, présentation), web (html, css), LaTeX, Google Earth) (...)

Sur d’autres sites (7490)

  • Increased File Size When Converting MP4 to WebM using FFmpeg

    23 décembre 2024, par kimgijeong

    I am using FFmpeg to convert MP4 to WebM with the following command :

    


    ffmpeg -y -hide_banner -nostats \
-f mov,mp4,m4a,3gp,3g2,mj2 -i "http://127.0.0.1:80/lotteon-low-bitrate.mp4" \
-threads auto -f webm -acodec libopus -b:a 96.059k -vcodec libsvtav1 -preset 11 -pix_fmt yuv420p \
-vf "scale='min(-1, iw)':'min(-1,ih)':force_original_aspect_ratio=decrease,crop=trunc(iw/2)*2:trunc(ih/2)*2" \
"/usr/local/m2/m2temp/xcdrtmp/2052_1.webm"


    


    However, the output webm file size is larger than the source MP4 file. For example :

    


      

    • Source MP4 : 4.6 MB (bit rate : 994,053 bps)

      


    • 


    • Output WebM : 16 MB (bit rate : 3,902,037 bps)

      


    • 


    


    I know SVT-AV1 encoder defaults to CRF mode. Due to not specifying the bitrate explicitly, the SVT-AV1 encoder automatically sets the bit_rate. It appears that the encoder is setting it to a much higher value (3,323,104 bps), causing the increase in file size compared to the source MP4 (994,053 bps). Here are the methods i tried to reduce the WebM file size compared to the source MP4 :

    


      

    1. -b:v 994k
    2. 


    


    I tried to match the target bitrate with the source MP4's bitrate to reduce the output size, but encountered the following error :

    


    Svt[error]: Instance 1: Force key frames is not supported for VBR mode Last message r
epeated 2 times [libsvtav1 @ 0x239dd100] Error setting encoder parameters: bad parameter (0x80001005)


    


    Looking at the official documentation, this mode change (from CRF to VBR when setting a target bitrate) appears to be expected behavior. However, the error is puzzling since I haven't set any force keyframe parameters in the FFmpeg command.

    


      

    1. svtav1-params "mbr=994k"
    2. 


    


    The second method i tried was using the svtav1-params "mbr=994k" option to set the maxrate while maintaining CRF mode This method showed some improvement, but the output file size was still larger than the source MP4.

    


      

    • Output WebM : 5MB (bit rate : 1,209,877 bps)
    • 


    


    The more critical reason why we can't adopt the second method (using svtav1-params "mbr=994k") is that even for the same MP4 source file, the output file size varies slightly with each encoding.

    


      

    1. -b:v 994k -svtav1-params “rc=2:pred-struct=1”(CBR, low delay)
    2. 


    


    The final method I tried was setting the target bitrate while using CBR (Constant Bit Rate) and low-delay mode The default value for pred-structure is 2(random access), but I had to use low-delay mode due to the following error :

    


    Svt[error]: CBR Rate control is currently not supported for SVT_AV1_PRED_RANDOM_ACCESS, use VBR mode


    


    This way was the only approach among those i tried that successfully reduced the output size.

    


      

    • Output WebM : 4.3MB (bit rate : 1,032,373 bps)
    • 


    


    In summary, I have three questions about this MP4 to WebM conversion issue :

    


      

    1. When setting the target bitrate with -b:v 994k, the switch to VBR mode is expected behavior. However, why does the force keyframe error occur when we haven't explicitly set any force keyframe parameters ?

      


    2. 


    3. Why does the output WebM file size fluctuate when setting maxrate either through -maxrate or svtav1-params "mbr=994k", even when using the same MP4 source file ?

      


    4. 


    5. Besides using -b:v 994k -svtav1-params "rc=2:pred-struct=1" (CBR with low delay), are there any other methods that can guarantee a WebM output size smaller than the source MP4 when converting from MP4 to WebM ?

      


    6. 


    


    I am using a recent version of the SVT-AV1 codec :

    


    Svt[info]: SVT [version]:       SVT-AV1 Encoder Lib 58146ca
Svt[info]: SVT [build]  :       GCC 11.5.0 20240719 (Red Hat 11.5.0-2)   64 bit
Svt[info]: LIB Build date: Oct 28 2024 07:40:59
ffmpeg video svt-av1


    


  • Linear Attribution Model : What Is It and How Does It Work ?

    16 février 2024, par Erin

    Want a more in-depth way to understand the effectiveness of your marketing campaigns ? Then, the linear attribution model could be the answer.

    Although you can choose from several different attribution models, a linear model is ideal for giving value to every touchpoint along the customer journey. It can help you identify your most effective marketing channels and optimise your campaigns. 

    So, without further ado, let’s explore what a linear attribution model is, when you should use it and how you can get started. 

    What is a linear attribution model ?

    A linear attribution model is a multi-touch method of marketing attribution where equal credit is given to each touchpoint. Every marketing channel used across the entire customer journey gets credit, and each is considered equally important. 

    So, if a potential customer has four interactions before converting, each channel gets 25% of the credit.

    The linear attribution model shares credit equally between each touchpoint

    Let’s look at how linear attribution works in practice using a hypothetical example of a marketing manager, Sally, who is looking for an alternative to Google Analytics. 

    Sally starts her conversion path by reading a Matomo article comparing Matomo to Google Analytics she finds when searching on Google. A few days later she signs up for a webinar she saw on Matomo’s LinkedIn page. Two weeks later, Sally gets a sign-off from her boss and decides to go ahead with Matomo. She visits the website and starts a free trial by clicking on one of the paid Google Ads. 

    Using a linear attribution model, we credit each of the channels Sally uses (organic traffic, organic social, and paid ads), ensuring no channel is overlooked in our marketing analysis. 

    Are there other types of attribution models ?

    Absolutely. There are several common types of attribution models marketing managers can use to measure the impact of channels in different ways. 

    Pros & Cons of Different Marketing Attribution Models
    • First interaction : Also called a first-touch attribution model, this method gives all the credit to the first channel in the customer journey. This model is great for optimising the top of your sales funnel.
    • Last interaction : Also called a last-touch attribution model, this approach gives all the credit to the last channel the customer interacts with. It’s a great model for optimising the bottom of your marketing funnel. 
    • Last non-direct interaction : This attribution model excludes direct traffic and credits the previous touchpoint. This is a fantastic alternative to a last-touch attribution model, especially if most customers visit your website before converting. 
    • Time decay attribution model : This model adjusts credit according to the order of the touchpoints. Those nearest the conversion get weighted the highest. 
    • Position-based attribution model : This model allocates 40% of the credit to the first and last touchpoints and splits the remaining 20% evenly between every other interaction.

    Why use a linear attribution model ?

    Marketing attribution is vital if you want to understand which parts of your marketing strategy are working. All of the attribution models described above can help you achieve this to some degree, but there are several reasons to choose a linear attribution model in particular. 

    It uses multi-touch attribution

    Unlike single-touch attribution models like first and last interaction, linear attribution is a multi-touch attribution model that considers every touchpoint. This is vital to get a complete picture of the modern customer journey, where customers interact with companies between 20 and 500 times

    Single-touch attribution models can be misleading by giving conversion credit to a single channel, especially if it was the customer’s last use. In our example above, Sally’s last interaction with our brand was through a paid ad, but it was hardly the most important. 

    It’s easy to understand

    Attribution models can be complicated, but linear attribution is easy to understand. Every touchpoint gets the same credit, allowing you to see how your entire marketing function works. This simplicity also makes it easy for marketers to take action. 

    It’s great for identifying effective marketing channels

    Because linear attribution is one of the few models that provides a complete view of the customer journey, it’s easy to identify your most common and influential touchpoints. 

    It accounts for the top and bottom of your funnel, so you can also categorise your marketing channels more effectively and make more informed decisions. For example, PPC ads may be a more common bottom-of-the-full touchpoint and should, therefore, not be used to target broad, top-of-funnel search terms.

    Are there any reasons not to use linear attribution ?

    Linear attribution isn’t perfect. Like all attribution models, it has its weaknesses. Specifically, linear attribution can be too simple, dilute conversion credit and unsuitable for long sales cycles.

    What are the reasons not to use linear attribution

    It can be too simple

    Linear attribution lacks nuance. It only considers touchpoints while ignoring other factors like brand image and your competitors. This is true for most attribution models, but it’s still important to point it out. 

    It can dilute conversion credit

    In reality, not every touchpoint impacts conversions to the same extent. In the example above, the social media post promoting the webinar may have been the most effective touchpoint, but we have no way of measuring this. 

    The risk with using a linear model is that credit can be underestimated and overestimated — especially if you have a long sales cycle. 

    It’s unsuitable for very long sales cycles

    Speaking of long sales cycles, linear attribution models won’t add much value if your customer journey contains dozens of different touchpoints. Credit will get diluted to the point where analysis becomes impossible, and the model will also struggle to measure the precise ways certain touchpoints impact conversions. 

    Should you use a linear attribution model ?

    A linear attribution model is a great choice for any company with shorter sales cycles or a reasonably straightforward customer journey that uses multiple marketing channels. In these cases, it helps you understand the contribution of each touchpoint and find your best channels. 

    It’s also a practical choice for small businesses and startups that don’t have a team of data scientists on staff or the budget to hire outside help. Because it’s so easy to set up and understand, anyone can start generating insights using this model. 

    How to set up a linear attribution model

    Are you sold on the idea of using a linear attribution model ? Then follow the steps below to get started :

    Set up marketing attribution in four steps

    Choose a marketing attribution tool

    Given the market is worth $3.1 billion, you won’t be surprised to learn there are plenty of tools to choose from. But choose carefully. The tool you pick can significantly impact your success with attribution modelling. 

    Take Google Analytics, for instance. While GA4 offers several marketing attribution models for free, including linear attribution, it lacks accuracy due to cookie consent rejection and data sampling. 

    Accurate marketing attribution is included as a feature in Matomo Cloud and is available as a plugin for Matomo On-Premise users. We support a full range of attribution models that use 100% accurate data because we don’t use data sampling, and cookie consent isn’t an issue (with the exception of Germany and the UK). That means you can trust our insights.

    Matomo’s marketing attribution is available out of the box, and we also provide access to raw data, allowing you to develop your custom attribution model. 

    Collect data

    The quality of your marketing attribution also depends on the quality and quantity of your data. It’s why you need to avoid a platform that uses data sampling. 

    This should include :

    • General data from your analytics platform, like pages visited and forms filled
    • Goals and conversions, which we’ll discuss in more detail in the next step
    • Campaign tracking data so you can monitor the behaviour of traffic from different referral channels
    • Behavioural data from features like Heatmaps or Session Recordings

    Set up goals and conversions

    You can’t assign conversion values to customer journey touchpoints if you don’t have conversion goals in place. That’s why the next step of the process is to set up conversion tracking in your web analytics platform. 

    Depending on your type of business and the product you sell, conversions could take one of the following forms :

    • A product purchase
    • Signing up for a webinar
    • Downloading an ebook
    • Filling in a form
    • Starting a free trial

    Setting up these kinds of goals is easy if you use Matomo. 

    Just head to the Goals section of the dashboard, click Manage Goals and then click the green Add A New Goal button. 

    Fill in the screen below, and add a Goal Revenue at the bottom of the page. Doing so will mean Matomo can automatically calculate the value of each touchpoint when using your attribution model. 

    A screenshot of Matomo's conversion dashboard

    If your analytics platform allows it, make sure you also set up Event Tracking, which will allow you to analyse how many users start to take a desired action (like filling in a form) but never complete the task. 

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Test and validate

    As we’ve explained, linear attribution is a great model in some scenarios, but it can fall short if you have a long or complex sales funnel. Even if you’re sure it’s the right model for your company, testing and validating is important. 

    Ideally, your chosen attribution tool should make this process pretty straightforward. For example, Matomo’s Marketing Attribution feature makes comparing and contrasting three different attribution models easy. 

    Here we compare the performance of three attribution models—linear, first-touch, and last-non-direct—in Matomo’s Marketing Attribution dashboard, providing straightforward analysis.

    If you think linear attribution accurately reflects the value of your channels, you can start to analyse the insights it generates. If not, then consider using another attribution model.

    Don’t forget to take action from your marketing efforts, either. Linear attribution helps you spot the channels that contribute most to conversions, so allocate more resources to those channels and see if you can improve your conversion rate or boost your ROI. 

    Make the most of marketing attribution with Matomo

    A linear attribution model lets you measure every touchpoint in your customer journey. It’s an easy attribution model to start with and lets you identify and optimise your most effective marketing channels. 

    However, accurate data is essential if you want to benefit the most from marketing attribution data. If your web analytics solution doesn’t play nicely with cookies or uses sampled data, then your linear model isn’t going to tell you the whole story. 

    That’s why over 1 million sites trust Matomo’s privacy-focused web analytics, ensuring accurate data for a comprehensive understanding of customer journeys.

    Now you know what linear attribution modelling is, start employing the model today by signing up for a free 21-day trial, no credit card required. 

  • What is Web Log Analytics and Why You Should Use It

    26 juin 2024, par Erin

    Can’t use JavaScript tracking on your website ? Need a more secure and privacy-friendly way to understand your website visitors ? Web log analytics is your answer. This method pulls data directly from your server logs, offering a secure and privacy-respecting alternative.  

    In this blog, we cover what web log analytics is, how it compares to JavaScript tracking, who it is best suited for, and why it might be the right choice for you. 

    What are server logs ? 

    Before diving in, let’s start with the basics : What are server logs ? Think of your web server as a diary that notes every visit to your website. Each time someone visits, the server records details like : 

    • User agent : Information about the visitor’s browser and operating system. 
    • Timestamp : The exact time the request was made. 
    • Requested URL : The specific page or resource the visitor requested. 

    These “diary entries” are called server logs, and they provide a detailed record of all interactions with your website. 

    Server log example 

    Here’s what a server log looks like : 

    192.XXX.X.X – – [24/Jun/2024:14:32:01 +0000] “GET /index.html HTTP/1.1” 200 1024 “https://www.example.com/referrer.html” “Mozilla/5.0 (Windows NT 10.0 ; Win64 ; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36” 

    192.XXX.X.X – – [24/Jun/2024:14:32:02 +0000] “GET /style.css HTTP/1.1” 200 3456 “https://www.example.com/index.html” “Mozilla/5.0 (Windows NT 10.0 ; Win64 ; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36” 

    192.XXX.X.X – – [24/Jun/2024:14:32:03 +0000] “GET /script.js HTTP/1.1” 200 7890 “https://www.example.com/index.html” “Mozilla/5.0 (Windows NT 10.0 ; Win64 ; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36” 

    192.XXX.X.X – – [24/Jun/2024:14:32:04 +0000] “GET /images/logo.png HTTP/1.1” 200 1234 “https://www.example.com/index.html” “Mozilla/5.0 (Windows NT 10.0 ; Win64 ; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36” 

    Breakdown of the log entry 

    Each line in the server log represents a single request made by a visitor to your website. Here’s a detailed breakdown of what each part means : 

    • IP Address : 192.XXX.X.X 
      • This is the IP address of the visitor’s device. 
    • User Identifier : – – 
      • These fields are typically used for user identification and authentication, which are not applicable here, hence the hyphens. 
    • Timestamp : [24/Jun/2024:14:32:01 +0000] 
        • The date and time of the request, including the timezone. 
    • Request Line : “GET /index.html HTTP/1.1” 
      • The request method (GET), the requested resource (/index.html), and the HTTP version (HTTP/1.1). 
    • Response Code : 200 
      • The HTTP status code indicates the result of the request (200 means OK). 
    • Response Size : 1024 
      • The size of the response in bytes. 
    • Referrer :https://www.example.com/referrer.html 
      • The URL of the referring page that led the visitor to the current page. 
    • User Agent : “Mozilla/5.0 (Windows NT 10.0 ; Win64 ; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36” 
      • Information about the visitor’s browser and operating system. 

    In the example above, there are multiple log entries for different resources (HTML page, CSS file, JavaScript file, and an image). This shows that when a visitor loads a webpage, multiple requests are made to load all the necessary resources. 

    What is web log analytics ? 

    Web log analytics is one of many methods for tracking visitors to your site.  

    Web log analytics is the process of analysing server log files to track and understand website visitors. Unlike traditional methods that use JavaScript tracking codes embedded in web pages, web log analytics pulls data directly from these server logs. 

    How it works : 

    1. Visitor request : A visitor’s browser requests your website. 
    2. Server logging : The server logs the request details. 
    3. Analysis : These logs are analysed to extract useful information about your visitors and their activities. 

    Web log analytics vs. JavaScript tracking 

    JavaScript tracking 

    JavaScript tracking is the most common method used to track website visitors. It involves embedding a JavaScript code snippet into your web pages. This code collects data on visitor interactions and sends it to a web analytics platform. 

    Web log analytics vs JavaScript tracking

    Differences and benefits :

    Privacy : 

    • Web log analytics : Since it doesn’t require embedding tracking codes, it is considered less intrusive and helps maintain higher privacy standards. 
    • JavaScript tracking : Embeds tracking codes directly on your website, which can be more invasive and raise privacy concerns. 

    Ease of setup : 

    • Web log analytics : No need to modify your website’s code. All you need is access to your server logs. 
    • JavaScript tracking : Requires adding tracking code on your web pages. This is generally an easier setup process.  

    Data collection : 

    • Web log analytics : Contain requests of users with adblockers (ghostery, adblock, adblock plus, privacy badger, etc.) sometimes making it more accurate. However, it may miss certain interactive elements like screen resolution or user events. It may also over-report data.  
    • JavaScript tracking : Can collect a wide range of data, including Custom dimensions, Ecommerce tracking, Heatmaps, Session recordings, Media and Form analytics, etc. 

    Why choose web log analytics ? 

    Enhanced privacy 

    Avoiding embedded tracking codes means there’s no JavaScript running on your visitors’ browsers. This significantly reduces the risk of data leakage and enhances overall privacy. 

    Comprehensive data collection 

    It isn’t affected by ad blockers or browser tracking protections, ensuring you capture more complete and accurate data about your visitors. 

    Historical data analysis 

    You can import and analyse historical log files, giving you insights into long-term visitor behaviour and trends. 

    Simple setup 

    Since it relies on server logs, there’s no need to alter your website’s code. This makes setup straightforward and minimises potential technical issues. 

    Who should use web log analytics ? 

    Web log analytics is particularly suited for businesses that prioritise data privacy and security.

    Organisations that handle sensitive data, such as banks, healthcare providers, and government agencies, can benefit from the enhanced privacy.  

    By avoiding JavaScript tracking, these entities minimise data exposure and comply with strict privacy regulations like Sarbanes Oxley and PCI. 

    Why use Matomo for web log analytics ? 

    Matomo stands out as a top choice for web log analytics because it prioritises privacy and data ownership

    Screenshot example of the Matomo dashboard

    Here’s why : 

    • Complete data control : You own all your data, so you don’t have to worry about third-party access. 
    • IP anonymisation : Matomo anonymises IP addresses to further protect user privacy. 
    • Bot filtering : Automatically excludes bots from your reports, ensuring you get accurate data. 
    • Simple migration : You can easily switch from other tools like AWStats by importing your historical logs into Matomo. 
    • Server log recognition : Recognises most server log formats (Apache, Nginx, IIS, etc.). 

    Start using web log analytics 

    Web log analytics offers a secure, privacy-focused alternative to traditional JavaScript tracking methods. By analysing server logs, you get valuable insights into your website traffic while maintaining high privacy standards.  

    If you’re serious about privacy and want reliable data, give Matomo’s web log analytics a try.  

    Start your 21-day free trial now. No credit card required.