
Recherche avancée
Médias (1)
-
Sintel MP4 Surround 5.1 Full
13 mai 2011, par
Mis à jour : Février 2012
Langue : English
Type : Video
Autres articles (41)
-
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
-
Ecrire une actualité
21 juin 2013, parPrésentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
Vous pouvez personnaliser le formulaire de création d’une actualité.
Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...) -
Publier sur MédiaSpip
13 juin 2013Puis-je poster des contenus à partir d’une tablette Ipad ?
Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir
Sur d’autres sites (6362)
-
Hacking the Popcorn Hour C-200
Update : A new firmware version has been released since the publication of this article. I do not know if the procedure described below will work with the new version.
The Popcorn Hour C-200 is a Linux-based media player with impressive specifications. At its heart is a Sigma Designs SMP8643 system on chip with a 667MHz MIPS 74Kf as main CPU, several co-processors, and 512MB of DRAM attached. Gigabit Ethernet, SATA, and USB provide connectivity with the world around it. With a modest $299 on the price tag, the temptation to repurpose the unit as a low-power server or cheap development board is hard to resist. This article shows how such a conversion can be achieved.
Kernel
The PCH runs a patched Linux 2.6.22.19 kernel. A source tarball is available from the manufacturer. This contains the sources with Sigma support patches, Con Kolivas’ patch set (scheduler tweaks), and assorted unrelated changes. Properly split patches are unfortunately not available. I have created a reduced patch against vanilla 2.6.22.19 with only Sigma-specific changes, available here.
The installed kernel has a number of features disabled, notably PTY support and oprofile. We will use kexec to load a more friendly one.
As might be expected, the PCH kernel does not have kexec support enabled. It does however, by virtue of using closed-source components, support module loading. This lets us turn kexec into a module and load it. A patch for this is available here. To build the module, apply the patch to the PCH sources and build using this configuration. This will produce two modules, kexec.ko and mips_kexec.ko. No other products of this build will be needed.
The replacement kernel can be built from the PCH sources or, if one prefers, from vanilla 2.6.22.19 with the Sigma-only patch. For the latter case, this config provides a minimal starting point suitable for NFS-root.
When configuring the kernel, make sure CONFIG_TANGOX_IGNORE_CMDLINE is enabled. Otherwise the command line will be overridden by a useless one stored in flash. A good command line can be set with CONFIG_CMDLINE (under “Kernel hacking” in menuconfig) or passed from kexec.
Taking control
In order to load our kexec module, we must first gain root privileges on the PCH, and here a few features of the system are working to our advantage :
- The PCH allows mounting any NFS export to access media files stored there.
- There is an HTTP server running. As root.
- This HTTP server can be readily instructed to fetch files from an NFS mount.
- Files with a name ending in .cgi are executed. As root.
All we need do to profit from this is place the kexec modules, the kexec userspace tools, and a simple script on an NFS export. Once this is done, and the mount point configured on the PCH, a simple HTTP request will send the old kernel screaming to /dev/null, our shiny new kernel taking its place.
The rootfs
A kernel is mostly useless without a root filesystem containing tools and applications. A number of tools for cross-compiling a full system exist, each with its strengths and weaknesses. The only thing to look out for is the version of kernel headers used (usually a linux-headers package). As we will be running an old kernel, chances are the default version is too recent. Other than this, everything should be by the book.
Assembling the parts
Having gathered all the pieces, it is now time to assemble the hack. The following steps are suitable for an NFS-root system. Adaptation to a disk-based system is left as an exercise.
- Build a rootfs for MIPS 74Kf little endian. Make sure kernel headers used are no more recent than 2.6.22.x. Include a recent version of the kexec userspace tools.
- Fetch and unpack the PCH kernel sources.
- Apply the modular kexec patch.
- Using this config, build the modules and install them as usual to the rootfs. The version string must be 2.6.22.19-19-4.
- From either the same kernel sources or plain 2.6.22.19 with Sigma patches, build a vmlinux and (optionally) modules using this config. Modify the compiled-in command line to point to the correct rootfs. Set the version string to something other than in the previous step.
- Copy vmlinux to any directory in the rootfs.
- Copy kexec.sh and kexec.cgi to the same directory as vmlinux.
- Export the rootfs over NFS with full read/write permissions for the PCH.
- Power on the PCH, and update to latest firmware.
- Configure an NFS mount of the rootfs.
- Navigate to the rootfs in the PCH UI. A directory listing of bin, dev, etc. should be displayed.
- On the host system, run the kexec.sh script with the target hostname or IP address as argument.
- If all goes well, the new kernel will boot and mount the rootfs.
Serial console
A serial console is indispensable for solving boot problems. The PCH board has two UART connectors. We will use the one labeled UART0. The pinout is as follows (not standard PC pinout).
+-----------+ 2| * * * * * |10 1| * * * * * |9 -----------+ J7 UART0 /---------------------/ board edge
Pin Function 1 +5V 5 Rx 6 Tx 10 GND The signals are 3.3V so a converter, e.g. MAX202, is required for connecting this to a PC serial port. The default port settings are 115200 bps 8n1.
-
Opera 10.60 Released with WebM Support
7 juillet 2010, par noreply@blogger.com (John Luther)Congratulations to everyone at Opera Software for releasing version 10.60 of their browser, which supports WebM video playback. Downloads for Windows, Mac OS and Linux are available on the Opera download page.
-
VP8 And FFmpeg
18 juin 2010, par Multimedia Mike — VP8UPDATE, 2010-06-17 : You don’t need to struggle through these instructions anymore. libvpx 0.9.1 and FFmpeg 0.6 work together much better. Please see this post for simple instructions on getting up and running quickly.
Let’s take the VP8 source code (in Google’s new libvpx library) for a spin ; get it to compile and hook it up to FFmpeg. I am hesitant to publish specific instructions for building in the somewhat hackish manner available on day 1 (download FFmpeg at a certain revision and apply a patch) since that kind of post has a tendency to rise in Google rankings. I will just need to remember to update this post after the library patches are applied to the official FFmpeg tree.
Statement of libvpx’s Relationship to FFmpeg
I don’t necessarily speak officially for FFmpeg. But I’ve been with the project long enough to explain how certain things work.Certainly, some may wonder if FFmpeg will incorporate Google’s newly open sourced libvpx library into FFmpeg. In the near term, FFmpeg will support encoding and decoding VP8 via external library as it does with a number of other libraries (most popularly, libx264). FFmpeg will not adopt the code for its own codebase, even if the license may allow it. That just isn’t how the FFmpeg crew rolls.
In the longer term, expect the FFmpeg project to develop an independent, interoperable implementation of the VP8 decoder. Sometime after that, there may also be an independent VP8 encoder as well.
Building libvpx
Download and build libvpx. This is a basic ’configure && make’ process. The build process creates a static library, a bunch of header files, and 14 utilities. A bunch of these utilities operate on a file format called IVF which is apparently a simple transport method for VP8. I have recorded the file format on the wiki.We could use a decoder for this in the FFmpeg code base for testing VP8 in the future.
Who’s game ?Just as I was proofreading this post, I saw that David Conrad has sent an IVF demuxer to the ffmpeg-devel list.There doesn’t seem to be a ’make install’ step for the library. Instead, go into the overly long directory (on my system, this is generated as vpx-vp8-nopost-nodocs-generic-gnu-v0.9.0), copy the contents of include/ to /usr/local/include and the static library in lib/ to /usr/local/lib .
Building FFmpeg with libvpx
Download FFmpeg source code at the revision specified or take your chances with the latest version (as I did). Download and apply provided patches. This part hurts since there is one diff per file. Most of them applied for me.Configure FFmpeg with
'configure --enable-libvpx_vp8 --enable-pthreads'
. Ideally, this should yield no complaints and ’libvpx_vp8’ should show up in the enabled decoders and encoders sections. The library apparently relies on threading which is why'--enable-pthreads'
is necessary. After I did this, I was able to create a new webm/VP8/Vorbis file simply with :ffmpeg -i input_file output_file.webm
Unfortunately, I can’t complete the round trip as decoding doesn’t seem to work. Passing the generated .webm file back into FFmpeg results in a bunch of errors of this format :
[libvpx_vp8 @ 0x8c4ab20]v0.9.0 [libvpx_vp8 @ 0x8c4ab20]Failed to initialize decoder : Codec does not implement requested capability
Maybe this is the FFmpeg revision mismatch biting me.
FFmpeg Presets
FFmpeg features support for preset files which contain collections of tuning options to be loaded into the program. Google provided some presets along with their FFmpeg patches :- 1080p50
- 1080p
- 360p
- 720p50
- 720p
To invoke one of these (assuming the program has been installed via ’make install’ so that the presets are in the right place) :
ffmpeg -i input_file -vcodec libvpx_vp8 -vpre 720p output_file.webm
This will use a set of parameters that are known to do well when encoding a 720p video.
Code Paths
One of goals with this post was to visualize a call graph after I got the decoder hooked up to FFmpeg. Fortunately, this recon is greatly simplified by libvpx’s simple_decoder utility. Steps :- Build libvpx with
--enable-gprof
- Run simple_decoder on an IVF file
- Get the pl_from_gprof.pl and dot_from_pl.pl scripts frome Graphviz’s gprof filters
- gprof simple_decoder | ./pl_from_gprof.pl | ./dot_from_pl.pl > 001.dot
- Remove the 2 [graph] and 1 [node] modifiers from the dot file (they only make the resulting graph very hard to read)
- dot -Tpng 001.dot > 001.png
Here are call graphs generated from decoding test vectors 001 and 017.
It’s funny to see several functions calling an empty bubble. Probably nothing to worry about. More interesting is the fact that a lot of function_c() functions are called. The ’_c’ at the end is important— that generally indicates that there are (or could be) SIMD-optimized versions. I know this codebase has plenty of assembly. All of the x86 ASM files appear to be written such that they could be compiled with NASM.
Leftovers
One interesting item in the code was vpx_scale/leapster. Is this in reference to the Leapster handheld educational gaming unit ? Based on this item from 2005 (archive.org copy), some Leapster titles probably used VP6. This reminds me of finding references to the PlayStation in Duck/On2’s original VpVision source release. I don’t know of any PlayStation games that used Duck’s original codecs but with thousands to choose from, it’s possible that we may find a few some day.