Recherche avancée

Médias (91)

Autres articles (102)

  • Multilang : améliorer l’interface pour les blocs multilingues

    18 février 2011, par

    Multilang est un plugin supplémentaire qui n’est pas activé par défaut lors de l’initialisation de MediaSPIP.
    Après son activation, une préconfiguration est mise en place automatiquement par MediaSPIP init permettant à la nouvelle fonctionnalité d’être automatiquement opérationnelle. Il n’est donc pas obligatoire de passer par une étape de configuration pour cela.

  • L’agrémenter visuellement

    10 avril 2011

    MediaSPIP est basé sur un système de thèmes et de squelettes. Les squelettes définissent le placement des informations dans la page, définissant un usage spécifique de la plateforme, et les thèmes l’habillage graphique général.
    Chacun peut proposer un nouveau thème graphique ou un squelette et le mettre à disposition de la communauté.

  • Possibilité de déploiement en ferme

    12 avril 2011, par

    MediaSPIP peut être installé comme une ferme, avec un seul "noyau" hébergé sur un serveur dédié et utilisé par une multitude de sites différents.
    Cela permet, par exemple : de pouvoir partager les frais de mise en œuvre entre plusieurs projets / individus ; de pouvoir déployer rapidement une multitude de sites uniques ; d’éviter d’avoir à mettre l’ensemble des créations dans un fourre-tout numérique comme c’est le cas pour les grandes plate-formes tout public disséminées sur le (...)

Sur d’autres sites (8135)

  • Matomo will now pay researchers 5,000 USD for a critical security vulnerability

    7 mai 2020, par Matomo Core Team

    Matomo Analytics is the leading open-source web analytics solution, designed to give you conclusive insights while respecting your user’s privacy, and keeping your data secure. We’re so proud Matomo is trusted with the analytics data of more than 1 million sites worldwide.

    Although we have had an excellent security track record so far, we recognise security is an ongoing challenge and requires constant vigilance. With this announcement we’re showing our commitment to reward those who help us maintain the highest security in Matomo.

    New bounty of 5,000 USD for a CRITICAL security issue responsibly disclosed to us

    We’re now paying 5,000 USD or 4,700 EUR for each critical vulnerability found, and responsibly disclosed to us. (Previously this bounty was less than 1,000USD.) 

    A Critical Issue in Matomo means an issue in our latest official release at : builds.matomo.org/latest.zip as installed on a typical server (and possibly using any of our official plugins by Matomo or InnoCraft from the Marketplace).

    If you can gain remote code execution on the server (i.e. RCE), or if you’re able to delete data with an HTTPS request (i.e. SQL Injection), this may qualify as a Critical Issue. Please report it on Hackerone.

    Matomo keeps your data secure

    The Matomo team has always been committed to achieving the highest standard of security. For example, Matomo was one of the first open-source projects in the world to launch a public bug bounty in January 2011. Every year many researchers, users and customers review the Matomo source code, and overall we’ve rewarded dozens of researchers over the years for their work in keeping Matomo data safe.

    How to make your Matomo server even more secure ?

    Check out our recommendations in How to configure Matomo for Security
     
  • libavfi/dnn : add LibTorch as one of DNN backend

    15 mars 2024, par Wenbin Chen
    libavfi/dnn : add LibTorch as one of DNN backend
    

    PyTorch is an open source machine learning framework that accelerates
    the path from research prototyping to production deployment. Official
    website : https://pytorch.org/. We call the C++ library of PyTorch as
    LibTorch, the same below.

    To build FFmpeg with LibTorch, please take following steps as
    reference :
    1. download LibTorch C++ library in
    https://pytorch.org/get-started/locally/,
    please select C++/Java for language, and other options as your need.
    Please download cxx11 ABI version :
    (libtorch-cxx11-abi-shared-with-deps-*.zip).
    2. unzip the file to your own dir, with command
    unzip libtorch-shared-with-deps-latest.zip -d your_dir
    3. export libtorch_root/libtorch/include and
    libtorch_root/libtorch/include/torch/csrc/api/include to $PATH
    export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH
    4. config FFmpeg with ../configure —enable-libtorch \
    —extra-cflag=-I/libtorch_root/libtorch/include \
    —extra-cflag=-I/libtorch_root/libtorch/include/torch/csrc/api/include \
    —extra-ldflags=-L/libtorch_root/libtorch/lib/
    5. make

    To run FFmpeg DNN inference with LibTorch backend :
    ./ffmpeg -i input.jpg -vf \
    dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y output.jpg

    The LibTorch_model.pt can be generated by Python with torch.jit.script()
    api. https://pytorch.org/tutorials/advanced/cpp_export.html. This is
    pytorch official guide about how to convert and load torchscript model.
    Please note, torch.jit.trace() is not recommanded, since it does
    not support ambiguous input size.

    Signed-off-by : Ting Fu <ting.fu@intel.com>
    Signed-off-by : Wenbin Chen <wenbin.chen@intel.com>
    Reviewed-by : Guo Yejun <yejun.guo@intel.com>

    • [DH] configure
    • [DH] libavfilter/dnn/Makefile
    • [DH] libavfilter/dnn/dnn_backend_torch.cpp
    • [DH] libavfilter/dnn/dnn_interface.c
    • [DH] libavfilter/dnn_filter_common.c
    • [DH] libavfilter/dnn_interface.h
    • [DH] libavfilter/vf_dnn_processing.c
  • Process GIF using FFmpeg libraries - can't find parser at av_parser_init

    24 novembre 2018, par natario

    I am playing with ffmpeg libs, namely libswscale and libavcodec for now. My goal is resize GIF files. From my ridiculous understanding, I think I need to

    • decode the GIF and get an AVFrame
    • process the frame with libswscale
    • encode again into GIF

    But I am stuck at step 1. Based on official sample at https://github.com/FFmpeg/FFmpeg/blob/master/doc/examples/decode_video.c , I need to get a parser :

    codec = avcodec_find_decoder(AV_CODEC_ID_GIF);
    parser = av_parser_init(codec->id);

    But no parser is found. I am not touching parser in my configure call, so I take all :

    Enabled parsers:
    aac                       cavsvideo                 dvbsub                    h263                      mpegvideo                 sipr                      xma
    aac_latm                  cook                      dvd_nav                   h264                      opus                      tak
    ac3                       dca                       dvdsub                    hevc                      png                       vc1
    adx                       dirac                     flac                      mjpeg                     pnm                       vorbis
    av1                       dnxhd                     g729                      mlp                       rv30                      vp3
    avs2                      dpx                       gsm                       mpeg4video                rv40                      vp8
    bmp                       dvaudio                   h261                      mpegaudio                 sbc                       vp9

    What am I doing wrong ? If this is the wrong approach, what is the correct one ?