Recherche avancée

Médias (39)

Mot : - Tags -/audio

Autres articles (79)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • Encoding and processing into web-friendly formats

    13 avril 2011, par

    MediaSPIP automatically converts uploaded files to internet-compatible formats.
    Video files are encoded in MP4, Ogv and WebM (supported by HTML5) and MP4 (supported by Flash).
    Audio files are encoded in MP3 and Ogg (supported by HTML5) and MP3 (supported by Flash).
    Where possible, text is analyzed in order to retrieve the data needed for search engine detection, and then exported as a series of image files.
    All uploaded files are stored online in their original format, so you can (...)

  • Submit bugs and patches

    13 avril 2011

    Unfortunately a software is never perfect.
    If you think you have found a bug, report it using our ticket system. Please to help us to fix it by providing the following information : the browser you are using, including the exact version as precise an explanation as possible of the problem if possible, the steps taken resulting in the problem a link to the site / page in question
    If you think you have solved the bug, fill in a ticket and attach to it a corrective patch.
    You may also (...)

Sur d’autres sites (7548)

  • MP4 codec support in Chromium

    18 mai 2018, par Staggan

    We have integrated Chromium Embedded Framework into our Windows game to allow us to render web pages from within our application, and everything works fine, except MP4 videos.

    I understand Chromium does not include this codec due to licensing issues, but can anyone provide details on how we can add support, even if we have to license a codec for it.

    All the information we can find seems to be old, and the functions referred to appear to be deprecated... so we are at a bit of a loss.

    All the video serving networks we have spoken to appear to serve MP4s.. so changing encoding does not seem to be an option.

    Any advice would be greatly appreciated.

    Thanks

  • SNES Hardware Compression

    16 juin 2011, par Multimedia Mike — Game Hacking

    I was browsing the source code for some Super Nintendo Entertainment System (SNES) emulators recently. I learned some interesting things about compression hardware. I had previously uncovered one compression algorithm used in an SNES title but that was implemented in software.

    SNES game cartridges — being all hardware — were at liberty to expand the hardware capabilities of the base system by adding new processors. The most well-known of these processors was the Super FX which allows for basic polygon graphical rendering, powering such games as Star Fox. It was by no means the only such add-on processor, though. Here is a Wikipedia page of all the enhancement chips used in assorted SNES games. A number of them mention compression and so I delved into the emulators to find the details :

    • The Super FX is listed in Wikipedia vaguely as being able to decompress graphics. I see no reference to decompression in emulator source code.
    • DSP-3 emulation source code makes reference to LZ-type compression as well as tree/symbol decoding. I’m not sure if the latter is a component of the former. Wikipedia lists the chip as supporting "Shannon-Fano bitstream decompression."
    • Similar to Super FX, the SA-1 chip is listed in Wikipedia as having some compression capabilities. Again, either that’s not true or none of the games that use the chip (notably Super Mario RPG) make use of the feature.
    • The S-DD1 chip uses arithmetic and Golomb encoding for compressing graphics. Wikipedia refers to this as the ABS Lossless Entropy Algorithm. Googling for further details on that algorithm name yields no results, but I suspect it’s unrelated to anti-lock brakes. The algorithm is alleged to allow Star Ocean to smash 13 MB of graphics into a 4 MB cartridge ROM (largest size of an SNES cartridge).
    • The SPC7110 can decompress data using a combination of arithmetic coding and Z-curve/Morton curve reordering.

    No, I don’t plan to implement codecs for these schemes. But it’s always comforting to know that I could.

    Not directly a compression scheme, but still a curious item is the MSU1 concept put forth by the bsnes emulator. This is a hypothetical coprocessor implemented by bsnes that gives an emulated cartridge access to a 4 GB address space. What to do with all this space ? Allow for the playback of uncompressed PCM audio as well as uncompressed video at 240x144x256 colors @ 30 fps. According to the docs and the source code, the latter feature doesn’t appear to be implemented, though ; only the raw PCM playback.

  • Programming Language Levels

    20 mai 2011, par Multimedia Mike — Programming

    I’ve been doing this programming thing for some 20 years now. Things sure do change. One change I ponder from time to time is the matter of programming language levels. Allow me to explain.

    The 1990s
    When I first took computer classes in the early 1990s, my texts would classify computer languages into 3 categories, or levels. The lower the level, the closer to the hardware ; the higher the level, the more abstract (and presumably, easier to use). I recall that the levels went something like this :

    • High level : Pascal, BASIC, Logo, Fortran
    • Medium level : C, Forth
    • Low level : Assembly language

    Keep in mind that these were the same texts which took the time to explain the history of computers from mainframes -> minicomputers -> a relatively recent phenomenon called microcomputers or "PCs".

    Somewhere in the mid-late 1990s, when I was at university, I was introduced to a new tier :

    • Very high level : Perl, shell scripting

    I think there was some debate among my peers about whether C++ and Java were properly classified as high or very high level. The distinction between high and very high, in my observation, seemed to be that very high level languages had more complex data structures (at the very least, a hash / dictionary / associative array / key-value map) built into the language, as well as implicit memory management.

    Modern Day
    These days, the old hierarchy is apparently forgotten (much like minicomputers). I observe that there is generally a much simpler 2-tier classification :

    • Low level : C, assembly language
    • High level : absolutely every other programming language in wide use today

    I find myself wondering where C++ and Objective-C fit in this classification scheme. Then I remember that it doesn’t matter and this is all academic.

    Relevancy
    I think about this because I have pretty much stuck to low-level programming all of my life, mostly due to my interest in game and multimedia-type programming. But the trends in computing have favored many higher level languages and programming paradigms. I woke up one day and realized that the kind of work I often do — lower level stuff — is not very common.

    I’m not here to argue that low or high level is superior. You know I’m all about using the appropriate tool for the job. But I sometimes find myself caught between worlds, having the defend and explain one to the other.

    • On one hand, it’s not unusual for the multitudes of programmers working at the high level to gasp and wonder why I or anyone else would ever use C or assembly language for anything when there are so many beautiful high level languages. I patiently explain that those languages have to be written in some other language (at first) and that they need to run on some operating system and that most assuredly won’t be written in a high level language. For further reading, I refer them to Joel Spolsky’s great essay called Back to Basics which describes why it can be useful to know at least a little bit about how the computer does what it does at the lowest levels.
    • On the other hand, believe it or not, I sometimes have to defend the merits of high level languages to my low level brethren. I’ll often hear variations of, "Any program can be written in C. Using a high level language to achieve the same will create a slow and bloated solution." I try to explain that the trade-off in time to complete the programming task weighed against the often-negligible performance hit of what is often an I/O-bound operation in the first place makes it worthwhile to use the high level language for a wide variety of tasks.

      Or I just ignore them. That’s actually the best strategy.