Recherche avancée

Médias (91)

Autres articles (45)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

  • Ajouter notes et légendes aux images

    7 février 2011, par

    Pour pouvoir ajouter notes et légendes aux images, la première étape est d’installer le plugin "Légendes".
    Une fois le plugin activé, vous pouvez le configurer dans l’espace de configuration afin de modifier les droits de création / modification et de suppression des notes. Par défaut seuls les administrateurs du site peuvent ajouter des notes aux images.
    Modification lors de l’ajout d’un média
    Lors de l’ajout d’un média de type "image" un nouveau bouton apparait au dessus de la prévisualisation (...)

  • Le plugin : Podcasts.

    14 juillet 2010, par

    Le problème du podcasting est à nouveau un problème révélateur de la normalisation des transports de données sur Internet.
    Deux formats intéressants existent : Celui développé par Apple, très axé sur l’utilisation d’iTunes dont la SPEC est ici ; Le format "Media RSS Module" qui est plus "libre" notamment soutenu par Yahoo et le logiciel Miro ;
    Types de fichiers supportés dans les flux
    Le format d’Apple n’autorise que les formats suivants dans ses flux : .mp3 audio/mpeg .m4a audio/x-m4a .mp4 (...)

Sur d’autres sites (9141)

  • Revision 5c05fbf6bb : Merge "Refactor 4x4 block level rd loop" into experimental

    30 mai 2013, par Jingning Han

    Changed Paths :
     Modify /vp9/encoder/vp9_rdopt.c



    Merge "Refactor 4x4 block level rd loop" into experimental

  • mp4 Vj Animation video lagging hi res video

    21 février 2020, par Ryan Stone

    I am trying to get a video to play inside a video tag at the top left hand corner of my page, it loads ok, the resolution is good and it seems to be looping but it is lagging very much, definatly not achieving 60fps it is in mp4 format and the resolution on the original mp4 is 1920x1080 it is a hi resolution vj free loop called GlassVein, you can see it if you search on youtube. On right clicking properties it comes up with the following inforamtion ;

    Bitrate:127kbs
    Data rate:11270kbps
    Total bitrate:11398kbs
    Audio sample rate is : 44khz
    filetype is:VLC media file(.mp4)
    (but i do not want or need the audio)

    & it also says 30fps, but I’m not sure i believe this as it runs smooth as butter on vlc media player no lagging, just smooth loop animation

    I have searched on :https://trac.ffmpeg.org/wiki/Encode/AAC for encoding information but it is complete gobbldygook to me, I don’t understand a word its saying

    My code is so far as follows ;

       <video src="GlassVeinColorful.mp4" autoplay="1" preload="auto" class="Vid" width="640" height="360" loop="1" viewport="" faststart="faststart" mpeg4="mpeg4" 320x240="320x240" 1080="1080" 128k="128k">  
       </video>

    Does anyone know why this is lagging so much, or what I could do about it.
    it is a quality animation and I don’t really want to loose an of its resolution or crispness.. the -s section was originally set to 1920x1080 as this is what the original file is but i have changed it to try and render it quicker...

    Any helpful sites, articles or answers would be great..

    2020 Update

    The Solution to this problem was to convert the Video to WebM, then use Javascript & a Html5 Canvas Element to render the Video to the page instead of using the video tag to embed the video.

    Html

    <section>
           <video src="Imgs/Vid/PurpGlassVein.webm" type="video/webm" width="684" height="auto" muted="muted" loop="loop" autoplay="autoplay">
                  <source>
                  <source>
                  <source>
           </source></source></source></video>
           <canvas style="filter:opacity(0);"></canvas>
    </section>

    Css

    video{
      display:none !important;
      visibility:hidden;
    }

    Javascript

       const Canv = document.querySelector("canvas");
       const Video = document.querySelector("video");
       const Ctx = Canv.getContext("2d");

       Video.addEventListener('play',()=>{
         function step() {
           Ctx.drawImage(Video, 0, 0, Canv.width, Canv.height)
           requestAnimationFrame(step)
         }
         requestAnimationFrame(step);
       })

       Canv.animate({
           filter: ['opacity(0) blur(5.28px)','opacity(1) blur(8.20px)']
       },{
           duration: 7288,
           fill: 'forwards',
           easing: 'ease-in',
           iterations: 1,
           delay: 728
       })

    I’ve Also Used the Vanilla Javascript .animate() API to fade the element into the page when the page loads. But one Caveat is that both the Canvas and the off-screen Video Tag must match the original videos resolution otherwise it starts to lag again, however you can use Css to scale it down via transform:scale(0.5) ; which doesn’t seem to effect performance at all.

    runs smooth as butter, and doesn’t loose any of the high resolution image.
    Added a slight blur 0.34px onto it aswell to smooth it even more.

    Possibly could of still used ffmpeg to get a better[Smaller File Size] WebM Output file but thats something I’ll have to look into at a later date.

  • Detect volume via mic, start recording, end on silence, transcribe and sent to endpoint

    15 juin 2023, par alphadmon

    I have been attempting to get this to work in many ways but I can't seem to get it right. Most of the time I get a part of it to work and then when I try to make other parts work, I generally break other things.

    &#xA;

    I am intercepting the volume coming from the mic and if it is louder than 50, I start a recording. I then keep recording until there is a silence, if the silence is equal to 5 seconds I then stop the recording.

    &#xA;

    I then send the recording to be transcribed by whisper using OpenAI API.

    &#xA;

    Once that is returned, I then want to send it to the open ai chat end point and get the response.

    &#xA;

    After that, I would like to start listening again.

    &#xA;

    Here is what I have that is sort of working so far, but the recording is an empty file always :

    &#xA;

    // DETECT SPEECH&#xA;const recorder = require(&#x27;node-record-lpcm16&#x27;);&#xA;&#xA;// TRANSCRIBE&#xA;const fs = require("fs");&#xA;const ffmpeg = require("fluent-ffmpeg");&#xA;const mic = require("mic");&#xA;const { Readable } = require("stream");&#xA;const ffmpegPath = require("@ffmpeg-installer/ffmpeg").path;&#xA;require(&#x27;dotenv&#x27;).config();&#xA;&#xA;// CHAT&#xA;const { Configuration, OpenAIApi } = require("openai");&#xA;&#xA;// OPEN AI&#xA;const configuration = new Configuration({&#xA;    organization: process.env.OPENAI_ORG,&#xA;    apiKey: process.env.OPENAI_API_KEY,&#xA;});&#xA;const openai = new OpenAIApi(configuration);&#xA;&#xA;// SETUP&#xA;ffmpeg.setFfmpegPath(ffmpegPath);&#xA;&#xA;// VARS&#xA;let isRecording = false;&#xA;const audioFilename = &#x27;recorded_audio.wav&#x27;;&#xA;const micInstance = mic({&#xA;    rate: &#x27;16000&#x27;,&#xA;    channels: &#x27;1&#x27;,&#xA;    fileType: &#x27;wav&#x27;,&#xA;});&#xA;&#xA;// DETECT SPEECH&#xA;const file = fs.createWriteStream(&#x27;determine_speech.wav&#x27;, { encoding: &#x27;binary&#x27; });&#xA;const recording = recorder.record();&#xA;recording.stream().pipe(file);&#xA;&#xA;&#xA;recording.stream().on(&#x27;data&#x27;, async (data) => {&#xA;    let volume = parseInt(calculateVolume(data));&#xA;    if (volume > 50 &amp;&amp; !isRecording) {&#xA;        console.log(&#x27;You are talking.&#x27;);&#xA;        await recordAudio(audioFilename);&#xA;    } else {&#xA;        setTimeout(async () => {&#xA;            console.log(&#x27;You are quiet.&#x27;);&#xA;            micInstance.stop();&#xA;            console.log(&#x27;Finished recording&#x27;);&#xA;            const transcription = await transcribeAudio(audioFilename);&#xA;            console.log(&#x27;Transcription:&#x27;, transcription);&#xA;            setTimeout(async () => {&#xA;                await askAI(transcription);&#xA;            }, 5000);&#xA;        }, 5000);&#xA;    }&#xA;});&#xA;&#xA;function calculateVolume(data) {&#xA;    let sum = 0;&#xA;&#xA;    for (let i = 0; i &lt; data.length; i &#x2B;= 2) {&#xA;        const sample = data.readInt16LE(i);&#xA;        sum &#x2B;= sample * sample;&#xA;    }&#xA;&#xA;    const rms = Math.sqrt(sum / (data.length / 2));&#xA;&#xA;    return rms;&#xA;}&#xA;&#xA;// TRANSCRIBE&#xA;function recordAudio(filename) {&#xA;    const micInputStream = micInstance.getAudioStream();&#xA;    const output = fs.createWriteStream(filename);&#xA;    const writable = new Readable().wrap(micInputStream);&#xA;&#xA;    console.log(&#x27;Listening...&#x27;);&#xA;&#xA;    writable.pipe(output);&#xA;&#xA;    micInstance.start();&#xA;&#xA;    micInputStream.on(&#x27;error&#x27;, (err) => {&#xA;        console.error(err);&#xA;    });&#xA;}&#xA;&#xA;// Transcribe audio&#xA;async function transcribeAudio(filename) {&#xA;    const transcript = await openai.createTranscription(&#xA;        fs.createReadStream(filename),&#xA;        "whisper-1",&#xA;    );&#xA;    return transcript.data.text;&#xA;}&#xA;&#xA;// CHAT&#xA;async function askAI(text) {&#xA;    let completion = await openai.createChatCompletion({&#xA;        model: "gpt-4",&#xA;        temperature: 0.2,&#xA;        stream: false,&#xA;        messages: [&#xA;            { role: "user", content: text },&#xA;            { role: "system", content: "Act like you are a rude person." }&#xA;        ],&#xA;    });&#xA;&#xA;    completion = JSON.stringify(completion.data, null, 2);&#xA;    console.log(completion);&#xA;}&#xA;

    &#xA;