Recherche avancée

Médias (17)

Mot : - Tags -/wired

Autres articles (104)

  • MediaSPIP version 0.1 Beta

    16 avril 2011, par

    MediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

  • Amélioration de la version de base

    13 septembre 2013

    Jolie sélection multiple
    Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
    Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)

Sur d’autres sites (8716)

  • How to obtain time markers for video splitting using python/OpenCV

    30 mars 2016, par Bleddyn Raw-Rees

    Hi I’m new to the world of programming and computer vision so please bare with me.

    I’m working on my MSc project which is researching automated deletion of low value content in digital file stores. I’m specifically looking at the sort of long shots that often occur in natural history filming whereby a static camera is left rolling in order to capture the rare snow leopard or whatever. These shots may only have some 60s of useful content with perhaps several hours of worthless content either side.

    As a first step I have a simple motion detection program from Adrian Rosebrock’s tutorial [http://www.pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opencv/#comment-393376]. Next I intend to use FFMPEG to split the video.

    What I would like help with is how to get in and out points based on the first and last points that motion is detected in the video.

    Here is the code should you wish to see it...

    # import the necessary packages
    import argparse
    import datetime
    import imutils
    import time
    import cv2

    # construct the argument parser and parse the arguments
    ap = argparse.ArgumentParser()
    ap.add_argument("-v", "--video", help="path to the video file")
    ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
    args = vars(ap.parse_args())

    # if the video argument is None, then we are reading from webcam
    if args.get("video", None) is None:
    camera = cv2.VideoCapture(0)
    time.sleep(0.25)

    # otherwise, we are reading from a video file
    else:
       camera = cv2.VideoCapture(args["video"])

    # initialize the first frame in the video stream
    firstFrame = None

    # loop over the frames of the video
    while True:
       # grab the current frame and initialize the occupied/unoccupied
       # text
       (grabbed, frame) = camera.read()
       text = "Unoccupied"

       # if the frame could not be grabbed, then we have reached the end
       # of the video
       if not grabbed:
           break

       # resize the frame, convert it to grayscale, and blur it
       frame = imutils.resize(frame, width=500)
       gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
       gray = cv2.GaussianBlur(gray, (21, 21), 0)

       # if the first frame is None, initialize it
       if firstFrame is None:
           firstFrame = gray
           continue

       # compute the absolute difference between the current frame and
       # first frame
       frameDelta = cv2.absdiff(firstFrame, gray)
       thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]

       # dilate the thresholded image to fill in holes, then find contours
       # on thresholded image
       thresh = cv2.dilate(thresh, None, iterations=2)
       (_, cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

       # loop over the contours
       for c in cnts:
           # if the contour is too small, ignore it
           if cv2.contourArea(c) < args["min_area"]:
               continue

           # compute the bounding box for the contour, draw it on the frame,
           # and update the text
           (x, y, w, h) = cv2.boundingRect(c)
           cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
           text = "Occupied"

       # draw the text and timestamp on the frame
       cv2.putText(frame, "Room Status: {}".format(text), (10, 20),
           cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
       cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y %I:%M:%S%p"),
           (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1)

       # show the frame and record if the user presses a key
       cv2.imshow("Security Feed", frame)
       cv2.imshow("Thresh", thresh)
       cv2.imshow("Frame Delta", frameDelta)
       key = cv2.waitKey(1) & 0xFF

       # if the `q` key is pressed, break from the lop
       if key == ord("q"):
           break

    # cleanup the camera and close any open windows
    camera.release()
    cv2.destroyAllWindows()

    Thanks !

  • How to obtain time markers for video splitting using python/OpenCV

    10 novembre 2018, par Bleddyn Raw-Rees

    I’m working on my MSc project which is researching automated deletion of low value content in digital file stores. I’m specifically looking at the sort of long shots that often occur in natural history filming whereby a static camera is left rolling in order to capture the rare snow leopard or whatever. These shots may only have some 60s of useful content with perhaps several hours of worthless content either side.

    As a first step I have a simple motion detection program from Adrian Rosebrock’s tutorial [http://www.pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opencv/#comment-393376]. Next I intend to use FFMPEG to split the video.

    What I would like help with is how to get in and out points based on the first and last points that motion is detected in the video.

    Here is the code should you wish to see it...

    # import the necessary packages
    import argparse
    import datetime
    import imutils
    import time
    import cv2

    # construct the argument parser and parse the arguments
    ap = argparse.ArgumentParser()
    ap.add_argument("-v", "--video", help="path to the video file")
    ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
    args = vars(ap.parse_args())

    # if the video argument is None, then we are reading from webcam
    if args.get("video", None) is None:
    camera = cv2.VideoCapture(0)
    time.sleep(0.25)

    # otherwise, we are reading from a video file
    else:
       camera = cv2.VideoCapture(args["video"])

    # initialize the first frame in the video stream
    firstFrame = None

    # loop over the frames of the video
    while True:
       # grab the current frame and initialize the occupied/unoccupied
       # text
       (grabbed, frame) = camera.read()
       text = "Unoccupied"

       # if the frame could not be grabbed, then we have reached the end
       # of the video
       if not grabbed:
           break

       # resize the frame, convert it to grayscale, and blur it
       frame = imutils.resize(frame, width=500)
       gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
       gray = cv2.GaussianBlur(gray, (21, 21), 0)

       # if the first frame is None, initialize it
       if firstFrame is None:
           firstFrame = gray
           continue

       # compute the absolute difference between the current frame and
       # first frame
       frameDelta = cv2.absdiff(firstFrame, gray)
       thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]

       # dilate the thresholded image to fill in holes, then find contours
       # on thresholded image
       thresh = cv2.dilate(thresh, None, iterations=2)
       (_, cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

       # loop over the contours
       for c in cnts:
           # if the contour is too small, ignore it
           if cv2.contourArea(c) < args["min_area"]:
               continue

           # compute the bounding box for the contour, draw it on the frame,
           # and update the text
           (x, y, w, h) = cv2.boundingRect(c)
           cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
           text = "Occupied"

       # draw the text and timestamp on the frame
       cv2.putText(frame, "Room Status: {}".format(text), (10, 20),
           cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
       cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y %I:%M:%S%p"),
           (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1)

       # show the frame and record if the user presses a key
       cv2.imshow("Security Feed", frame)
       cv2.imshow("Thresh", thresh)
       cv2.imshow("Frame Delta", frameDelta)
       key = cv2.waitKey(1) & 0xFF

       # if the `q` key is pressed, break from the lop
       if key == ord("q"):
           break

    # cleanup the camera and close any open windows
    camera.release()
    cv2.destroyAllWindows()
  • Unable to decode media issue on chrome browser

    20 octobre 2018, par Shrikant D

    I am experiencing an issue while playing media on my application. I am using html5 player which works fine on another browser but the media not worked on Google Chrome. Below is the ffmpeg output.

    ffmpeg version 3.4.1 Copyright (c) 2000-2017 the FFmpeg developers

     built with Apple LLVM version 8.0.0 (clang-800.0.42.1)

     configuration: --prefix=/usr/local/Cellar/ffmpeg/3.4.1 --enable-shared --enable-pthreads --enable-version3 --enable-hardcoded-tables --enable-avresample --cc=clang --host-cflags= --host-ldflags= --enable-gpl --enable-libmp3lame --enable-libx264 --enable-libxvid --enable-opencl --enable-videotoolbox --disable-lzma

     libavutil      55. 78.100 / 55. 78.100

     libavcodec     57.107.100 / 57.107.100

     libavformat    57. 83.100 / 57. 83.100

     libavdevice    57. 10.100 / 57. 10.100

     libavfilter     6.107.100 /  6.107.100

     libavresample   3.  7.  0 /  3.  7.  0

     libswscale      4.  8.100 /  4.  8.100

     libswresample   2.  9.100 /  2.  9.100

     libpostproc    54.  7.100 / 54.  7.100

    Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'sources-5a6b388fb093f.mp4':

     Metadata:

       major_brand     : mp42

       minor_version   : 0

       compatible_brands: mp42mp41

       creation_time   : 2017-10-31T01:45:10.000000Z

     Duration: 00:04:55.72, start: 0.000000, bitrate: 10300 kb/s

       Stream #0:0(eng): Video: h264 (Main) (avc1 / 0x31637661), yuv420p(tv, bt709), 1920x1080, 9975 kb/s, 59.94 fps, 59.94 tbr, 60k tbn, 119.88 tbc (default)

       Metadata:

         creation_time   : 2017-10-31T01:45:10.000000Z

         handler_name    : Alias Data Handler

         encoder         : AVC Coding

       Stream #0:1(eng): Audio: aac (LC) (mp4a / 0x6134706D), 48000 Hz, stereo, fltp, 317 kb/s (default)

       Metadata:

         creation_time   : 2017-10-31T01:45:10.000000Z

         handler_name    : Alias Data Handler

    The issue is replicable on Windows, Linux/Ubuntu and Mac on Google Chrome browser.

    UPDATED :

    render_id: 56
    player_id: 0
    origin_url: https://example.com/
    frame_url: https://example.com/node/83810
    frame_title:
    url: https://example.com/sites/default/files/sources-5a6b388fb093f.mp4
    total_bytes: 380754023
    streaming: false
    single_origin: true
    passed_cors_access_check: false
    range_header_supported: true
    pipeline_state: kStopped
    info: Selected FFmpegVideoDecoder for video decoding, config: codec: h264 format: 1 profile: h264 main coded size: [1920,1080] visible rect: [0,0,1920,1080] natural size: [1920,1080] has extra data? true encryption scheme: Unencrypted rotation: 0°
    audio_channels_count: 2
    audio_codec_name: aac
    audio_sample_format: Float 32-bit planar
    audio_samples_per_second: 48000
    bitrate: 10300299
    found_audio_stream: true
    found_video_stream: true
    height: 1080
    max_duration: 295.722667
    start_time: 0
    time_base: 1/60000
    video_codec_name: h264
    video_format: PIXEL_FORMAT_I420
    video_is_encrypted: false
    width: 1920
    audio_dds: false
    audio_decoder: FFmpegAudioDecoder
    video_dds: false
    video_decoder: FFmpegVideoDecoder
    audio_buffering_state: BUFFERING_HAVE_ENOUGH
    video_buffering_state: BUFFERING_HAVE_ENOUGH
    for_suspended_start: false
    pipeline_buffering_state: BUFFERING_HAVE_ENOUGH
    duration: 295.722667
    event: PAUSE
    error: video decode error
    pipeline_error: PIPELINE_ERROR_DECODE

    Added chrome Player Properties for specific media.