Recherche avancée

Médias (0)

Mot : - Tags -/masques

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (74)

  • MediaSPIP version 0.1 Beta

    16 avril 2011, par

    MediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
    Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
    Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
    Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...)

  • Amélioration de la version de base

    13 septembre 2013

    Jolie sélection multiple
    Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
    Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)

  • Mise à jour de la version 0.1 vers 0.2

    24 juin 2013, par

    Explications des différents changements notables lors du passage de la version 0.1 de MediaSPIP à la version 0.3. Quelles sont les nouveautés
    Au niveau des dépendances logicielles Utilisation des dernières versions de FFMpeg (>= v1.2.1) ; Installation des dépendances pour Smush ; Installation de MediaInfo et FFprobe pour la récupération des métadonnées ; On n’utilise plus ffmpeg2theora ; On n’installe plus flvtool2 au profit de flvtool++ ; On n’installe plus ffmpeg-php qui n’est plus maintenu au (...)

Sur d’autres sites (12652)

  • Swift framework project with internal C module - Undefined symbols for architecture arm64

    29 mars 2020, par Phạm Phi Phúc

    I’m creating Swift framework project using FFmpeg module internally.

    Steps are :

    1. Download source of FFmpeg from official website.
    2. Build it by build script here : https://github.com/kewlbear/FFmpeg-iOS-build-script
    3. Copy built file to project
    4. Create file module.modulemap, it’s content is :
    module FFmpeg [system][extern_c] {

       header "include/libavcodec/avcodec.h"
       header "include/libavdevice/avdevice.h"
       header "include/libavfilter/avfilter.h"
       header "include/libavformat/avformat.h"
       header "include/libavutil/avutil.h"
       header "include/libswresample/swresample.h"
       header "include/libswscale/swscale.h"

       export *
    }

    Project tree is :

    enter image description here

    1. Set Import paths for both project settings and target settings to
      $(SRCROOT)/MediaToolkit/Libraries/FFmpeg/**
    2. My source code is :
    import Foundation
    import FFmpeg

    public class MediaToolkit {
       public init(){}

       public func hello() {
           print("AVFMT_NOFILE: \(AVFMT_NOFILE)")
           avformat_network_init()
       }
    }

    When I build it, I received error

    Undefined symbols for architecture arm64:
     "_avformat_network_init", referenced from:
         MediaToolkit.MediaToolkit.hello(Swift.String) -> () in MediaToolkit.o
    ld: symbol(s) not found for architecture arm64
    clang: error: linker command failed with exit code 1 (use -v to see invocation)

    If I remove line avformat_network_init(), it will print AVFMT_NOFILE: 1

  • fate/webp : add test for webp lossless decoding (rgb and rgba)

    25 juin 2016, par Martin Vignali
    fate/webp : add test for webp lossless decoding (rgb and rgba)
    

    output have been compared with official decoding tool output (dwebp)

    Signed-off-by : Michael Niedermayer <michael@niedermayer.cc>

    • [DH] tests/fate/image.mak
    • [DH] tests/ref/fate/webp-rgb-lossless
    • [DH] tests/ref/fate/webp-rgba-lossless
  • Announcing the world’s fastest VP8 decoder : ffvp8

    24 juillet 2010, par Dark Shikari — ffmpeg, google, speed, VP8

    Back when I originally reviewed VP8, I noted that the official decoder, libvpx, was rather slow. While there was no particular reason that it should be much faster than a good H.264 decoder, it shouldn’t have been that much slower either ! So, I set out with Ronald Bultje and David Conrad to make a better one in FFmpeg. This one would be community-developed and free from the beginning, rather than the proprietary code-dump that was libvpx. A few weeks ago the decoder was complete enough to be bit-exact with libvpx, making it the first independent free implementation of a VP8 decoder. Now, with the first round of optimizations complete, it should be ready for primetime. I’ll go into some detail about the development process, but first, let’s get to the real meat of this post : the benchmarks.

    We tested on two 1080p clips : Parkjoy, a live-action 1080p clip, and the Sintel trailer, a CGI 1080p clip. Testing was done using “time ffmpeg -vcodec libvpx or vp8 -i input -vsync 0 -an -f null -”. We all used the latest SVN FFmpeg at the time of this posting ; the last revision optimizing the VP8 decoder was r24471.

    Parkjoy graphSintel graph

    As these benchmarks show, ffvp8 is clearly much faster than libvpx, particularly on 64-bit. It’s even faster by a large margin on Atom, despite the fact that we haven’t even begun optimizing for it. In many cases, ffvp8′s extra speed can make the difference between a video that plays and one that doesn’t, especially in modern browsers with software compositing engines taking up a lot of CPU time. Want to get faster playback of VP8 videos ? The next versions of FFmpeg-based players, like VLC, will include ffvp8. Want to get faster playback of WebM in your browser ? Lobby your browser developers to use ffvp8 instead of libvpx. I expect Chrome to switch first, as they already use libavcodec for most of their playback system.

    Keep in mind ffvp8 is not “done” — we will continue to improve it and make it faster. We still have a number of optimizations in the pipeline that aren’t committed yet.

    Developing ffvp8

    The initial challenge, primarily pioneered by David and Ronald, was constructing the core decoder and making it bit-exact to libvpx. This was rather challenging, especially given the lack of a real spec. Many parts of the spec were outright misleading and contradicted libvpx itself. It didn’t help that the suite of official conformance tests didn’t even cover all the features used by the official encoder ! We’ve already started adding our own conformance tests to deal with this. But I’ve complained enough in past posts about the lack of a spec ; let’s get onto the gritty details.

    The next step was adding SIMD assembly for all of the important DSP functions. VP8′s motion compensation and deblocking filter are by far the most CPU-intensive parts, much the same as in H.264. Unlike H.264, the deblocking filter relies on a lot of internal saturation steps, which are free in SIMD but costly in a normal C implementation, making the plain C code even slower. Of course, none of this is a particularly large problem ; any sane video decoder has all this stuff in SIMD.

    I tutored Ronald in x86 SIMD and wrote most of the motion compensation, intra prediction, and some inverse transforms. Ronald wrote the rest of the inverse transforms and a bit of the motion compensation. He also did the most difficult part : the deblocking filter. Deblocking filters are always a bit difficult because every one is different. Motion compensation, by comparison, is usually very similar regardless of video format ; a 6-tap filter is a 6-tap filter, and most of the variation going on is just the choice of numbers to multiply by.

    The biggest challenge in an SIMD deblocking filter is to avoid unpacking, that is, going from 8-bit to 16-bit. Many operations in deblocking filters would naively appear to require more than 8-bit precision. A simple example in the case of x86 is abs(a-b), where a and b are 8-bit unsigned integers. The result of “a-b” requires a 9-bit signed integer (it can be anywhere from -255 to 255), so it can’t fit in 8-bit. But this is quite possible to do without unpacking : (satsub(a,b) | satsub(b,a)), where “satsub” performs a saturating subtract on the two values. If the value is positive, it yields the result ; if the value is negative, it yields zero. Oring the two together yields the desired result. This requires 4 ops on x86 ; unpacking would probably require at least 10, including the unpack and pack steps.

    After the SIMD came optimizing the C code, which still took a significant portion of the total runtime. One of my biggest optimizations was adding aggressive “smart” prefetching to reduce cache misses. ffvp8 prefetches the reference frames (PREVIOUS, GOLDEN, and ALTREF)… but only the ones which have been used reasonably often this frame. This lets us prefetch everything we need without prefetching things that we probably won’t use. libvpx very often encodes frames that almost never (but not quite never) use GOLDEN or ALTREF, so this optimization greatly reduces time spent prefetching in a lot of real videos. There are of course countless other optimizations we made that are too long to list here as well, such as David’s entropy decoder optimizations. I’d also like to thank Eli Friedman for his invaluable help in benchmarking a lot of these changes.

    What next ? Altivec (PPC) assembly is almost nonexistent, with the only functions being David’s motion compensation code. NEON (ARM) is completely nonexistent : we’ll need that to be fast on mobile devices as well. Of course, all this will come in due time — and as always — patches welcome !

    Appendix : the raw numbers

    Here’s the raw numbers (in fps) for the graphs at the start of this post, with standard error values :

    Core i7 620QM (1.6Ghz), Windows 7, 32-bit :
    Parkjoy ffvp8 : 44.58 0.44
    Parkjoy libvpx : 33.06 0.23
    Sintel ffvp8 : 74.26 1.18
    Sintel libvpx : 56.11 0.96

    Core i5 520M (2.4Ghz), Linux, 64-bit :
    Parkjoy ffvp8 : 68.29 0.06
    Parkjoy libvpx : 41.06 0.04
    Sintel ffvp8 : 112.38 0.37
    Sintel libvpx : 69.64 0.09

    Core 2 T9300 (2.5Ghz), Mac OS X 10.6.4, 64-bit :
    Parkjoy ffvp8 : 54.09 0.02
    Parkjoy libvpx : 33.68 0.01
    Sintel ffvp8 : 87.54 0.03
    Sintel libvpx : 52.74 0.04

    Core Duo (2Ghz), Mac OS X 10.6.4, 32-bit :
    Parkjoy ffvp8 : 21.31 0.02
    Parkjoy libvpx : 17.96 0.00
    Sintel ffvp8 : 41.24 0.01
    Sintel libvpx : 29.65 0.02

    Atom N270 (1.6Ghz), Linux, 32-bit :
    Parkjoy ffvp8 : 15.29 0.01
    Parkjoy libvpx : 12.46 0.01
    Sintel ffvp8 : 26.87 0.05
    Sintel libvpx : 20.41 0.02