Recherche avancée

Médias (91)

Autres articles (41)

  • Des sites réalisés avec MediaSPIP

    2 mai 2011, par

    Cette page présente quelques-uns des sites fonctionnant sous MediaSPIP.
    Vous pouvez bien entendu ajouter le votre grâce au formulaire en bas de page.

  • Use, discuss, criticize

    13 avril 2011, par

    Talk to people directly involved in MediaSPIP’s development, or to people around you who could use MediaSPIP to share, enhance or develop their creative projects.
    The bigger the community, the more MediaSPIP’s potential will be explored and the faster the software will evolve.
    A discussion list is available for all exchanges between users.

  • Supporting all media types

    13 avril 2011, par

    Unlike most software and media-sharing platforms, MediaSPIP aims to manage as many different media types as possible. The following are just a few examples from an ever-expanding list of supported formats : images : png, gif, jpg, bmp and more audio : MP3, Ogg, Wav and more video : AVI, MP4, OGV, mpg, mov, wmv and more text, code and other data : OpenOffice, Microsoft Office (Word, PowerPoint, Excel), web (html, CSS), LaTeX, Google Earth and (...)

Sur d’autres sites (7528)

  • VP8 for Real-time Video Applications

    15 février 2011, par noreply@blogger.com (John Luther)

    With the growing interest in videoconferencing on the web platform, it’s a good time to explore the features of VP8 that make it an exceptionally good codec for real-time applications like videoconferencing.

    VP8 Design History & Features

    Real-time applications were a primary use case when VP8 was designed. The VP8 encoder has features specifically engineered to overcome the challenges inherent in compressing and transmitting real-time video data.

    • Processor-adaptive encoding. 16 encoder complexity levels automatically (or manually) adjust encoder features such as motion search strategy, quantizer optimizations, and loop filtering strength.
    • Encoder can be configured to use a target percentage of the host CPU.
      Ability to measure the time taken to encode each frame and adjust encoder complexity dynamically to keep the encoding time per frame constant
    • Robust error recovery (packet retransmission, forward error correction, recovery frame/new keyframe requests)
    • Temporal scalability (i.e., a single video bitstream that can degrade as needed depending on a participant’s available bandwidth)
    • Highly efficient decoding performance on low-power devices. Conventional video technology has grown to a state of complexity where dedicated hardware chips are needed to make it work well. With VP8, software-based solutions have proven to meet customer needs without requiring specialized hardware.

    For a more information about real-time video features in VP8, see the slide presentation by WebM Project engineer Paul Wilkins (PDF file).

    Commercially Available Products

    Millions of people around the world have been using VP7/8 for video chat for years. VP8 is deployed in some of today’s most popular consumer videoconferencing applications, including Skype (group video calling), Sightspeed, ooVoo and Logitech Vid. All of these vendors are active WebM project supporters. VP8’s predecessor, VP7, has been used in Skype video calling since 2005 and is supported in the new Skype app for iPhone. Other real-time VP8 implementations are coming soon, including ooVoo, and VP8 will play a leading role in Google’s plans for real-time applications on the web platform.

    Real-time applications will be extremely important as the web platform matures. The WebM community has made significant improvements in VP8 for real-time use cases since our launch and will continue to do so in the future.

    John Luther is Product Manager of the WebM Project.

  • libavformat/utils : Only require first packet to be known for all audio and video...

    11 septembre 2011, par Joakim Plate

    libavformat/utils : Only require first packet to be known for all audio and video...

  • Revision 7eef48a76c : Added support for Screen Video V2, and On2 VP6 with alpha channel. Fixed a compi

    20 septembre 2007, par Marc Noirot

    Changed Paths :
     Modify /flv.h


     Modify /flvdump.c


     Modify /flvmeta.c



    Added support for Screen Video V2, and On2 VP6 with alpha channel.
    Fixed a compilation issue on MacOSX because of a misplaced minus sign.