
Recherche avancée
Médias (1)
-
The pirate bay depuis la Belgique
1er avril 2013, par
Mis à jour : Avril 2013
Langue : français
Type : Image
Autres articles (34)
-
La file d’attente de SPIPmotion
28 novembre 2010, parUne file d’attente stockée dans la base de donnée
Lors de son installation, SPIPmotion crée une nouvelle table dans la base de donnée intitulée spip_spipmotion_attentes.
Cette nouvelle table est constituée des champs suivants : id_spipmotion_attente, l’identifiant numérique unique de la tâche à traiter ; id_document, l’identifiant numérique du document original à encoder ; id_objet l’identifiant unique de l’objet auquel le document encodé devra être attaché automatiquement ; objet, le type d’objet auquel (...) -
Personnaliser en ajoutant son logo, sa bannière ou son image de fond
5 septembre 2013, parCertains thèmes prennent en compte trois éléments de personnalisation : l’ajout d’un logo ; l’ajout d’une bannière l’ajout d’une image de fond ;
-
Ecrire une actualité
21 juin 2013, parPrésentez les changements dans votre MédiaSPIP ou les actualités de vos projets sur votre MédiaSPIP grâce à la rubrique actualités.
Dans le thème par défaut spipeo de MédiaSPIP, les actualités sont affichées en bas de la page principale sous les éditoriaux.
Vous pouvez personnaliser le formulaire de création d’une actualité.
Formulaire de création d’une actualité Dans le cas d’un document de type actualité, les champs proposés par défaut sont : Date de publication ( personnaliser la date de publication ) (...)
Sur d’autres sites (6504)
-
configure : update copyright year
1er janvier, par Lynne -
NumPy array of a video changes from the original after writing into the same video
29 mars 2021, par RashiqI have a video (
test.mkv
) that I have converted into a 4D NumPy array - (frame, height, width, color_channel). I have even managed to convert that array back into the same video (test_2.mkv
) without altering anything. However, after reading this new,test_2.mkv
, back into a new NumPy array, the array of the first video is different from the second video's array i.e. their hashes don't match and thenumpy.array_equal()
function returns false. I have tried using both python-ffmpeg and scikit-video but cannot get the arrays to match.

Python-ffmpeg attempt :


import ffmpeg
import numpy as np
import hashlib

file_name = 'test.mkv'

# Get video dimensions and framerate
probe = ffmpeg.probe(file_name)
video_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'video'), None)
width = int(video_stream['width'])
height = int(video_stream['height'])
frame_rate = video_stream['avg_frame_rate']

# Read video into buffer
out, error = (
 ffmpeg
 .input(file_name, threads=120)
 .output("pipe:", format='rawvideo', pix_fmt='rgb24')
 .run(capture_stdout=True)
)

# Convert video buffer to array
video = (
 np
 .frombuffer(out, np.uint8)
 .reshape([-1, height, width, 3])
)

# Convert array to buffer
video_buffer = (
 np.ndarray
 .flatten(video)
 .tobytes()
)

# Write buffer back into a video
process = (
 ffmpeg
 .input('pipe:', format='rawvideo', s='{}x{}'.format(width, height))
 .output("test_2.mkv", r=frame_rate)
 .overwrite_output()
 .run_async(pipe_stdin=True)
)
process.communicate(input=video_buffer)

# Read the newly written video
out_2, error = (
 ffmpeg
 .input("test_2.mkv", threads=40)
 .output("pipe:", format='rawvideo', pix_fmt='rgb24')
 .run(capture_stdout=True)
)

# Convert new video into array
video_2 = (
 np
 .frombuffer(out_2, np.uint8)
 .reshape([-1, height, width, 3])
)

# Video dimesions change
print(f'{video.shape} vs {video_2.shape}') # (844, 1080, 608, 3) vs (2025, 1080, 608, 3)
print(f'{np.array_equal(video, video_2)}') # False

# Hashes don't match
print(hashlib.sha256(bytes(video_2)).digest()) # b'\x88\x00\xc8\x0ed\x84!\x01\x9e\x08 \xd0U\x9a(\x02\x0b-\xeeA\xecU\xf7\xad0xa\x9e\\\xbck\xc3'
print(hashlib.sha256(bytes(video)).digest()) # b'\x9d\xc1\x07xh\x1b\x04I\xed\x906\xe57\xba\xf3\xf1k\x08\xfa\xf1\xfaM\x9a\xcf\xa9\t8\xf0\xc9\t\xa9\xb7'



Scikit-video attempt :


import skvideo.io as sk
import numpy as np

video_data = sk.vread('test.mkv')

sk.vwrite('test_2_ski.mkv', video_data)

video_data_2 = sk.vread('test_2_ski.mkv')

# Dimensions match but...
print(video_data.shape) # (844, 1080, 608, 3)
print(video_data_2.shape) # (844, 1080, 608, 3)

# ...array elements don't
print(np.array_equal(video_data, video_data_2)) # False

# Hashes don't match either
print(hashlib.sha256(bytes(video_2)).digest()) # b'\x8b?]\x8epD:\xd9B\x14\xc7\xba\xect\x15G\xfaRP\xde\xad&EC\x15\xc3\x07\n{a[\x80'
print(hashlib.sha256(bytes(video)).digest()) # b'\x9d\xc1\x07xh\x1b\x04I\xed\x906\xe57\xba\xf3\xf1k\x08\xfa\xf1\xfaM\x9a\xcf\xa9\t8\xf0\xc9\t\xa9\xb7'



I don't understand where I'm going wrong and both the respective documentations do not highlight how to do this particular task. Any help is appreciated. Thank you.


-
Can I use the file buffer or stream as input for fluent-ffmpeg ? I am trying to avoid saving the video locally to get its path before removing
22 avril 2023, par Moath ThawahrehI am receiving the file via an api, I was trying to process the file.buffer as input for FFmpeg but it did not work, I had to save the video locally first and then process the path and remove the saved video later on.
I don't want to believe that there is no other way to solve this and I have been looking for solutions and workarounds but it was all about ffmpeg input as a path.


I would love to find a solution using fluent-ffmpeg because it has some other great features, but I won't mind any suggestions for compressing the video using any different approaches if it's more efficient


Again my code below works fine but I have to save the video and then remove it I am hoping for a more efficient solution :


fs.writeFileSync('temp.mp4', file.buffer);

 // Resize the temporary file using ffmpeg
 ffmpeg('temp.mp4') // here I tried pass file.buffer as readable stream,it receives paths only 
 .format('mp4')
 .size('50%')
 .save('resized.mp4')
 .on('end', async () => {
 // Upload the resized file to Firebase
 const resizedFileStream = bucket.file(`video/${uniqueId}`).createWriteStream();
 fs.createReadStream('resized.mp4').pipe(resizedFileStream);

 await new Promise<void>((resolve, reject) => {
 resizedFileStream
 .on('finish', () => {
 // Remove the local files after they have been uploaded
 fs.unlinkSync('temp.mp4');
 fs.unlinkSync('resized.mp4');
 resolve();
 })
 .on('error', reject);
 });

 // Get the URL of the uploaded resized version
 const resizedFile = bucket.file(`video/${uniqueId}`);
 const url = await resizedFile.getSignedUrl({
 action: 'read',
 expires: '03-17-2025', // Change this to a reasonable expiration date
 });

 console.log('Resized file uploaded successfully.');
 })
 .on('error', (err) => {
 console.log('An error occurred: ' + err.message);
 });
</void>