Recherche avancée

Médias (91)

Autres articles (79)

  • Personnaliser les catégories

    21 juin 2013, par

    Formulaire de création d’une catégorie
    Pour ceux qui connaissent bien SPIP, une catégorie peut être assimilée à une rubrique.
    Dans le cas d’un document de type catégorie, les champs proposés par défaut sont : Texte
    On peut modifier ce formulaire dans la partie :
    Administration > Configuration des masques de formulaire.
    Dans le cas d’un document de type média, les champs non affichés par défaut sont : Descriptif rapide
    Par ailleurs, c’est dans cette partie configuration qu’on peut indiquer le (...)

  • MediaSPIP Player : problèmes potentiels

    22 février 2011, par

    Le lecteur ne fonctionne pas sur Internet Explorer
    Sur Internet Explorer (8 et 7 au moins), le plugin utilise le lecteur Flash flowplayer pour lire vidéos et son. Si le lecteur ne semble pas fonctionner, cela peut venir de la configuration du mod_deflate d’Apache.
    Si dans la configuration de ce module Apache vous avez une ligne qui ressemble à la suivante, essayez de la supprimer ou de la commenter pour voir si le lecteur fonctionne correctement : /** * GeSHi (C) 2004 - 2007 Nigel McNie, (...)

  • Les autorisations surchargées par les plugins

    27 avril 2010, par

    Mediaspip core
    autoriser_auteur_modifier() afin que les visiteurs soient capables de modifier leurs informations sur la page d’auteurs

Sur d’autres sites (5958)

  • Announcing the first free software Blu-ray encoder

    25 avril 2010, par Dark Shikari — blu-ray, x264

    For many years it has been possible to make your own DVDs with free software tools. Over the course of the past decade, DVD creation evolved from the exclusive domain of the media publishing companies to something basically anyone could do on their home computer.

    But Blu-ray has yet to get that treatment. Despite the “format war” between Blu-ray and HD DVD ending over two years ago, free software has lagged behind. “Professional” tools for Blu-ray video encoding can cost as much as $100,000 and are often utter garbage. Here are two actual screenshots from real Blu-rays : I wish I was making this up.

    But today, things change. Today we take the first step towards a free software Blu-ray creation toolkit.

    Thanks to tireless work by Kieran Kunyha, Alex Giladi, Lamont Alston, and the Doom9 crowd, x264 can now produce Blu-ray-compliant video. Extra special thanks to The Criterion Collection for sponsoring the final compliance test to confirm x264′s Blu-ray compliance.

    With x264′s powerful compression, as demonstrated by the incredibly popular BD-Rebuilder Blu-ray backup software, it’s quite possible to author Blu-ray disks on DVD9s (dual-layer DVDs) or even DVD5s (single-layer DVDs) with a reasonable level of quality. With a free software encoder and less need for an expensive Blu-ray burner, we are one step closer to putting HD optical media creation in the hands of the everyday user.

    To celebrate this achievement, we are making available for download a demo Blu-ray encoded with x264, containing entirely free content !

    On this Blu-ray are the Open Movie Project films Big Buck Bunny and Elephant’s Dream, available under a Creative Commons license. Additionally, Microsoft has graciously provided about 6 minutes of lossless HD video and audio (from part of a documentary project) under a very liberal license. This footage rounds out the Blu-ray by adding some difficult live-action content in addition to the relatively compressible CGI footage from the Open Movie Project. Finally, we used this sound sample, available under a Creative Commons license.

    You may notice that the Blu-ray image is only just over 2GB. This is intentional ; we have encoded all the content on the disk at appropriate bitrates to be playable from an ordinary 4.7GB DVD. This should make it far easier to burn a copy of the Blu-ray, since Blu-ray burners and writable media are still relatively rare. Most Blu-ray players will treat a DVD containing Blu-ray data as a normal Blu-ray disc. A few, such as the Playstation 3, will not, but you can still play it as a data disc.

    Finally, note that (in accordance with the Blu-ray spec) the disc image file uses the UDF 2.5 filesystem, which may be incompatible with some older virtual drive and DVD burning applications. You’ll also need to play it on an actual Blu-ray player if you want to get the menus and such working correctly. If you’re looking to play it on a PC, a free trial of Arcsoft TMT is available here.

    What are you waiting for ? Grab a copy today !

    UPDATE : Here is an AVCHD-compliant version of the above, which should work better when burned on a DVD-5 instead of a BD-R. (mirror)

    What’s left before we have a fully free software Blu-ray creation toolkit ? Audio is already dealt with ; AC3 audio (aka Dolby Digital), the format used in DVD, is still supported by Blu-ray, and there are many free software AC3 encoders. The primary missing application is a free software Blu-ray authoring tool, to combine the video and audio streams to create a Blu-ray file structure with the menus, chapters, and so forth that we have all come to expect. But the hardest part is dealt with : we can now create compatible video and audio streams.

    In the meantime, x264 can be used to create streams to be authored using Blu-Print, Scenarist, Encore or other commercial authoring tools.

    More detailed documentation on the new Blu-ray support and how to use it can be found in the official commit message. Do keep in mind that you have to export to raw H.264 (not MKV or MP4) or else the buffering information will be slightly incorrect. Finally, also note that the encoding settings given as an example are not a good choice for general-purpose encoding : they are intentionally crippled by Blu-ray restrictions, which will significantly reduce compression for ordinary non-Blu-ray encoding.

    In addition to Blu-ray support, the aforementioned commit comes with a lot of fun extras :

    x264 now has native variable-framerate ratecontrol, which makes sure your encodes get a correct target bitrate and proper limiting of maximum bitrate even if the duration of every frame is different and the “framerate” is completely unknown. This helps a lot when encoding from variable-framerate container formats such as FLV and WMV, along with variable-framerate content such as anime.

    x264 now supports pulldown (telecine) in much the same fashion as it is handled in MPEG-2. The calling application can pass in flags representing how to display a frame, allowing easy transcoding from MPEG-2 sources with pulldown, such as broadcast television. The x264 commandline app contains some examples of these (such as the common 3:2 pulldown pattern).

    x264 now also exports HRD timing information, which is critical for compliant transport stream muxing. There is currently an active project to write a fully DVB-compatible free software TS muxer that will be able to interface with x264 for a seamless free software broadcast system. It will likely also be possible to repurpose this muxer as part of a free software Blu-ray authoring package.

    All of this is now available in the latest x264.

  • I Really Like My New EeePC

    29 août 2010, par Multimedia Mike — General

    Fair warning : I’m just going to use this post to blather disconnectedly about a new-ish toy.

    I really like my new EeePC. I was rather enamored with the original EeePC 701 from late 2007, a little box with a tiny 7″ screen that is credited with kicking off the netbook revolution. Since then, Asus has created about a hundred new EeePC models.

    Since I’m spending so much time on a train these days, I finally took the plunge to get a better netbook. I decided to stay loyal to Asus and their Eee lineage and got the highest end EeePC they presently offer (which was still under US$500)– the EeePC 1201PN. The ’12′ in the model number represents a 12″ screen size and the rest of the specs are commensurately as large. Indeed, it sort of blurs the line between netbook and full-blown laptop.



    Incidentally, after I placed the order for the 1201PN nearly 2 months ago, and I mean the very literal next moment, this Engadget headline came across announcing the EeePC 1215N. My new high-end (such as it is) computer purchase was immediately obsoleted ; I thought that only happened in parody. (As of this writing, the 1215N still doesn’t appear to be shipping, though.)

    It’s a sore point among Linux aficionados that Linux was used to help kickstart the netbook trend but that now it’s pretty much impossible to find Linux pre-installed on a netbook. So it is in this case. This 1201PN comes with Windows 7 Home Premium installed. This is a notable differentiator from most netbooks which only have Windows 7 Home Starter, a.k.a., the Windows 7 version so crippled that it doesn’t even allow the user to change the background image.

    I wished to preserve the Windows 7 installation (you never know when it will come in handy) and dual boot Linux. I thought I would have to use the Windows partition tool to divide work some magic. Fortunately, the default installation already carved the 250 GB HD in half ; I was able to reformat the second partition and install Linux. The details are a little blurry, but I’m pretty sure one of those external USB optical drives shown in my last post actually performed successfully for this task. Lucky break.



    The EeePC 1201PN, EeePC 701, Belco Alpha-400, and even a comparatively gargantuan Sony Vaio full laptop– all of the portable computers in the household

    So I got Ubuntu 10.04 Linux installed in short order. This feels like something of a homecoming for me. You see, I used Linux full-time at home from 1999-2006. In 2007, I switched to using Windows XP full-time, mostly because my home use-case switched to playing a lot of old, bad computer games. By the end of 2008, I had transitioned to using the Mac Mini that I had originally purchased earlier that year for running FATE cycles. That Mac served as my main home computer until I purchased the 1201PN 2 months ago.

    Mostly, I have this overriding desire for computers to just work, at least in their basic functions. And that’s why I’m so roundly impressed with the way Linux handles right out of the box. Nearly everything on the 1201PN works in Linux. The video, the audio, the wireless networking, the webcam, it all works out of the box. I had to do the extra installation step to get the binary nVidia drivers installed but even that’s relatively seamless, especially compared to “the way things used to be” (drop to a prompt, run some binary installer from the prompt as root, watch it fail in arcane ways because the thing is only certified to run on one version of one Linux distribution). The 1201PN, with its nVidia Ion2 graphics, is able to drive both its own 1366×768 screen simultaneously with an external monitor running at up on 2560×1600.

    The only weird hiccup in the whole process was that I had a little trouble with the special volume keys on the keyboard (specifically, the volume up/down/mute keys didn’t do anything). But I quickly learned that I had to install some package related to ACPI and they magically started to do the right thing. Now I get to encounter the Linux Flash Player bug where modifying volume via those special keys forces fullscreen mode to exit. Adobe really should fix that.

    Also, trackpad multitouch gestures don’t work right away. Based on my reading, it is possible to set those up in Linux. But it’s largely a preference thing– I don’t care much for multitouch. This creates a disparity when I use Windows 7 on the 1201PN which is configured per default to use multitouch.



    The same 4 laptops stacked up

    So, in short, I’m really happy with this little machine. Traditionally, I have had absolutely no affinity for laptops/notebooks/portable computers at all even if everyone around was always completely enamored with the devices. What changed for me ? Well for starters, as a long-time Linux user, I was used to having to invest in very specific, carefully-researched hardware lest I not be able to use it under the Linux OS. This was always a major problem in the laptop field which typically reign supreme in custom, proprietary hardware components. These days, not so much, and these netbooks seem to contain well-supported hardware. Then there’s the fact that laptops always cost so much more than similarly capable desktop systems and that I had no real reason for taking a computer with me when I left home. So my use case changed, as did the price point for relatively low-power laptops/netbooks.

    Data I/O geek note : The 1201PN is capable of wireless-N networking — as many netbooks seem to have — but only 100 Mbit ethernet. I wondered why it didn’t have gigabit ethernet. Then I remembered that 100 Mbit ethernet provides 11-11.5 Mbytes/sec of transfer speed which, in my empirical experience, is approximately the maximum write speed of a 5400 RPM hard drive– which is what the 1201PN possesses.

  • ARM inline asm secrets

    6 juillet 2010, par Mans — ARM, Compilers

    Although I generally recommend against using GCC inline assembly, preferring instead pure assembly code in separate files, there are occasions where inline is the appropriate solution. Should one, at a time like this, turn to the GCC documentation for guidance, one must be prepared for a degree of disappointment. As it happens, much of the inline asm syntax is left entirely undocumented. This article attempts to fill in some of the blanks for the ARM target.

    Constraints

    Each operand of an inline asm block is described by a constraint string encoding the valid representations of the operand in the generated assembly. For example the “r” code denotes a general-purpose register. In addition to the standard constraints, ARM allows a number of special codes, only some of which are documented. The full list, including a brief description, is available in the constraints.md file in the GCC source tree. The following table is an extract from this file consisting of the codes which are meaningful in an inline asm block (a few are only useful in the machine description itself).

    f Legacy FPA registers f0-f7.
    t The VFP registers s0-s31.
    v The Cirrus Maverick co-processor registers.
    w The VFP registers d0-d15, or d0-d31 for VFPv3.
    x The VFP registers d0-d7.
    y The Intel iWMMX co-processor registers.
    z The Intel iWMMX GR registers.
    l In Thumb state the core registers r0-r7.
    h In Thumb state the core registers r8-r15.
    j A constant suitable for a MOVW instruction. (ARM/Thumb-2)
    b Thumb only. The union of the low registers and the stack register.
    I In ARM/Thumb-2 state a constant that can be used as an immediate value in a Data Processing instruction. In Thumb-1 state a constant in the range 0 to 255.
    J In ARM/Thumb-2 state a constant in the range -4095 to 4095. In Thumb-1 state a constant in the range -255 to -1.
    K In ARM/Thumb-2 state a constant that satisfies the I constraint if inverted. In Thumb-1 state a constant that satisfies the I constraint multiplied by any power of 2.
    L In ARM/Thumb-2 state a constant that satisfies the I constraint if negated. In Thumb-1 state a constant in the range -7 to 7.
    M In Thumb-1 state a constant that is a multiple of 4 in the range 0 to 1020.
    N Thumb-1 state a constant in the range 0 to 31.
    O In Thumb-1 state a constant that is a multiple of 4 in the range -508 to 508.
    Pa In Thumb-1 state a constant in the range -510 to +510
    Pb In Thumb-1 state a constant in the range -262 to +262
    Ps In Thumb-2 state a constant in the range -255 to +255
    Pt In Thumb-2 state a constant in the range -7 to +7
    G In ARM/Thumb-2 state a valid FPA immediate constant.
    H In ARM/Thumb-2 state a valid FPA immediate constant when negated.
    Da In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with two Data Processing insns.
    Db In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with three Data Processing insns.
    Dc In ARM/Thumb-2 state a const_int, const_double or const_vector that can be generated with four Data Processing insns. This pattern is disabled if optimizing for space or when we have load-delay slots to fill.
    Dn In ARM/Thumb-2 state a const_vector which can be loaded with a Neon vmov immediate instruction.
    Dl In ARM/Thumb-2 state a const_vector which can be used with a Neon vorr or vbic instruction.
    DL In ARM/Thumb-2 state a const_vector which can be used with a Neon vorn or vand instruction.
    Dv In ARM/Thumb-2 state a const_double which can be used with a VFP fconsts instruction.
    Dy In ARM/Thumb-2 state a const_double which can be used with a VFP fconstd instruction.
    Ut In ARM/Thumb-2 state an address valid for loading/storing opaque structure types wider than TImode.
    Uv In ARM/Thumb-2 state a valid VFP load/store address.
    Uy In ARM/Thumb-2 state a valid iWMMX load/store address.
    Un In ARM/Thumb-2 state a valid address for Neon doubleword vector load/store instructions.
    Um In ARM/Thumb-2 state a valid address for Neon element and structure load/store instructions.
    Us In ARM/Thumb-2 state a valid address for non-offset loads/stores of quad-word values in four ARM registers.
    Uq In ARM state an address valid in ldrsb instructions.
    Q In ARM/Thumb-2 state an address that is a single base register.

    Operand codes

    Within the text of an inline asm block, operands are referenced as %0, %1 etc. Register operands are printed as rN, memory operands as [rN, #offset], and so forth. In some situations, for example with operands occupying multiple registers, more detailed control of the output may be required, and once again, an undocumented feature comes to our rescue.

    Special code letters inserted between the % and the operand number alter the output from the default for each type of operand. The table below lists the more useful ones.

    c An integer or symbol address without a preceding # sign
    B Bitwise inverse of integer or symbol without a preceding #
    L The low 16 bits of an immediate constant
    m The base register of a memory operand
    M A register range suitable for LDM/STM
    H The highest-numbered register of a pair
    Q The least significant register of a pair
    R The most significant register of a pair
    P A double-precision VFP register
    p The high single-precision register of a VFP double-precision register
    q A NEON quad register
    e The low doubleword register of a NEON quad register
    f The high doubleword register of a NEON quad register
    h A range of VFP/NEON registers suitable for VLD1/VST1
    A A memory operand for a VLD1/VST1 instruction
    y S register as indexed D register, e.g. s5 becomes d2[1]