
Recherche avancée
Médias (1)
-
Somos millones 1
21 juillet 2014, par
Mis à jour : Juin 2015
Langue : français
Type : Video
Autres articles (67)
-
MediaSPIP 0.1 Beta version
25 avril 2011, parMediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
The zip file provided here only contains the sources of MediaSPIP in its standalone version.
To get a working installation, you must manually install all-software dependencies on the server.
If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...) -
MediaSPIP version 0.1 Beta
16 avril 2011, parMediaSPIP 0.1 beta est la première version de MediaSPIP décrétée comme "utilisable".
Le fichier zip ici présent contient uniquement les sources de MediaSPIP en version standalone.
Pour avoir une installation fonctionnelle, il est nécessaire d’installer manuellement l’ensemble des dépendances logicielles sur le serveur.
Si vous souhaitez utiliser cette archive pour une installation en mode ferme, il vous faudra également procéder à d’autres modifications (...) -
Amélioration de la version de base
13 septembre 2013Jolie sélection multiple
Le plugin Chosen permet d’améliorer l’ergonomie des champs de sélection multiple. Voir les deux images suivantes pour comparer.
Il suffit pour cela d’activer le plugin Chosen (Configuration générale du site > Gestion des plugins), puis de configurer le plugin (Les squelettes > Chosen) en activant l’utilisation de Chosen dans le site public et en spécifiant les éléments de formulaires à améliorer, par exemple select[multiple] pour les listes à sélection multiple (...)
Sur d’autres sites (9991)
-
avformat : Immersive Audio Model and Formats demuxer
25 novembre 2023, par James Almeravformat : Immersive Audio Model and Formats demuxer
Signed-off-by : James Almer <jamrial@gmail.com>
-
avutil : introduce an Immersive Audio Model and Formats API
25 novembre 2023, par James Almer -
Model the loss of video codec
10 janvier 2024, par MonacoI want to use a neural network to model the error loss after video encoding. The modeling process is as follows :


I use ffmpeg to encode and decode video frames. Since this process is not implemented using tensors in PyTorch and cannot compute gradients, I have to separately implement a neural network in PyTorch to enable gradient backpropagation. However, it turns out that the neural network cannot effectively learn the video encoding.


I want to know if there are currently any implementations of video encoders or decoders that support backpropagation of gradients. I don't necessarily need to update the parameters of the encoder/decoder, but I want it to support gradient backpropagation so that I can use it for various tasks related to deep learning.