Recherche avancée

Médias (3)

Mot : - Tags -/plugin

Autres articles (68)

  • Le profil des utilisateurs

    12 avril 2011, par

    Chaque utilisateur dispose d’une page de profil lui permettant de modifier ses informations personnelle. Dans le menu de haut de page par défaut, un élément de menu est automatiquement créé à l’initialisation de MediaSPIP, visible uniquement si le visiteur est identifié sur le site.
    L’utilisateur a accès à la modification de profil depuis sa page auteur, un lien dans la navigation "Modifier votre profil" est (...)

  • Configurer la prise en compte des langues

    15 novembre 2010, par

    Accéder à la configuration et ajouter des langues prises en compte
    Afin de configurer la prise en compte de nouvelles langues, il est nécessaire de se rendre dans la partie "Administrer" du site.
    De là, dans le menu de navigation, vous pouvez accéder à une partie "Gestion des langues" permettant d’activer la prise en compte de nouvelles langues.
    Chaque nouvelle langue ajoutée reste désactivable tant qu’aucun objet n’est créé dans cette langue. Dans ce cas, elle devient grisée dans la configuration et (...)

  • XMP PHP

    13 mai 2011, par

    Dixit Wikipedia, XMP signifie :
    Extensible Metadata Platform ou XMP est un format de métadonnées basé sur XML utilisé dans les applications PDF, de photographie et de graphisme. Il a été lancé par Adobe Systems en avril 2001 en étant intégré à la version 5.0 d’Adobe Acrobat.
    Étant basé sur XML, il gère un ensemble de tags dynamiques pour l’utilisation dans le cadre du Web sémantique.
    XMP permet d’enregistrer sous forme d’un document XML des informations relatives à un fichier : titre, auteur, historique (...)

Sur d’autres sites (7195)

  • Announcing our latest open source project : DeviceDetector

    30 juillet 2014, par Stefan Giehl — Community, Development, Meta, DeviceDetector

    This blog post is an announcement for our latest open source project release : DeviceDetector ! The Universal Device Detection library will parse any User Agent and detect the browser, operating system, device used (desktop, tablet, mobile, tv, cars, console, etc.), brand and model.

    Read on to learn more about this exciting release.

    Why did we create DeviceDetector ?

    Our previous library UserAgentParser only had the possibility to detect operating systems and browsers. But as more and more traffic is coming from mobile devices like smartphones and tablets it is getting more and more important to know which devices are used by the websites visitors.

    To ensure that the device detection within Piwik will gain the required attention, so it will be as accurate as possible, we decided to move that part of Piwik into a separate project, that we will maintain separately. As an own project we hope the DeviceDetector will gain a better visibility as well as a better support by and for the community !

    DeviceDetector is hosted on GitHub at piwik/device-detector. It is also available as composer package through Packagist.

    How DeviceDetector works

    Every client requesting data from a webserver identifies itself by sending a so-called User-Agent within the request to the server. Those User Agents might contain several information such as :

    • client name and version (clients can be browsers or other software like feed readers, media players, apps,…)
    • operating system name and version
    • device identifier, which can be used to detect the brand and model.

    For Example :

    Mozilla/5.0 (Linux; Android 4.4.2; Nexus 5 Build/KOT49H) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.99 Mobile Safari/537.36

    This User Agent contains following information :

    Operating system is Android 4.4.2, client uses the browser Chrome Mobile 32.0.1700.99 and the device is a Google Nexus 5 smartphone.

    What DeviceDetector currently detects

    DeviceDetector is able to detect bots, like search engines, feed fetchers, site monitors and so on, five different client types, including around 100 browsers, 15 feed readers, some media players, personal information managers (like mail clients) and mobile apps using the AFNetworking framework, around 80 operating systems and nine different device types (smartphones, tablets, feature phones, consoles, tvs, car browsers, cameras, smart displays and desktop devices) from over 180 brands.

    Note : Piwik itself currently does not use the full feature set of DeviceDetector. Client detection is currently not implemented in Piwik (only detected browsers are reported, other clients are marked as Unknown). Client detection will be implemented into Piwik in the future, follow #5413 to stay updated.

    Performance of DeviceDetector

    Our detections are currently handled by an enormous number of regexes, that are defined in several .YML Files. As parsing these .YML files is a bit slow, DeviceDetector is able to cache the parsed .YML Files. By default DeviceDetector uses a static cache, which means that everything is cached in static variables. As that only improves speed for many detections within one process, there are also adapters to cache in files or memcache for speeding up detections across requests.

    How can users help contribute to DeviceDetector ?

    Submit your devices that are not detected yet

    If you own a device, that is currently not correctly detected by the DeviceDetector, please create a issue on GitHub
    In order to check if your device is detected correctly by the DeviceDetector go to your Piwik server, click on ‘Settings’ link, then click on ‘Device Detection’ under the Diagnostic menu. If the data does not match, please copy the displayed User Agent and use that and your device data to create a ticket.

    Submit a list of your User Agents

    In order to create new detections or improve the existing ones, it is necessary for us to have lists of User Agents. If you have a website used by mostly non desktop devices it would be useful if you send a list of the User Agents that visited your website. To do so you need access to your access logs. The following command will extract the User Agents :

    zcat ~/path/to/access/logs* | awk -F'"' '{print $6}' | sort | uniq -c | sort -rn | head -n20000 > /home/piwik/top-user-agents.txt

    If you want to help us with those data, please get in touch at devicedetector@piwik.org

    Submit improvements on GitHub

    As DeviceDetector is free/libre library, we invite you to help us improving the detections as well as the code. Please feel free to create tickets and pull requests on Github.

    What’s the next big thing for DeviceDetector ?

    Please check out the list of issues in device-detector issue tracker.

    We hope the community will answer our call for help. Together, we can build DeviceDetector as the most powerful device detection library !

    Happy Device Detection,

  • Ruby on Rails 4 Heroku App Crash while uploading large size video

    22 juillet 2016, par Krishna Vyas

    large video file isn’t uploading on heroku and throwing Application Crash error
    Here is my Model Code :

    has_attached_file :video, :styles => {
     :medium => {
       :geometry => "640x480",
       :format => 'mp4',
       :convert_options => {
       :output => {
         :vcodec => 'libx264',
         :acodec => 'copy'
       }
     }
     },
     :thumb => {
       :geometry => "300x300#",
       :format => 'jpg',
       :time => 2,
       :auto_rotate => true
     }
    }, :processors => [:transcoder]

    validates_attachment_content_type :video, content_type: /\Avideo\/.*\Z/

    Here is my log from heroku

    2016-07-22T13:15:13.616340+00:00 app[web.1]: Command :: file -b --mime '/tmp/33028ec79c8028f75908c90d9f018aeb20160722-3-1e90wvf.mp4'
    2016-07-22T13:15:13.771935+00:00 app[web.1]: [AV] Running command: if command -v avprobe 2>/dev/null; then echo "true"; else echo "false"; fi
    2016-07-22T13:15:13.773078+00:00 app[web.1]: [AV] Running command: if command -v ffmpeg 2>/dev/null; then echo "true"; else echo "false"; fi
    2016-07-22T13:15:13.774121+00:00 app[web.1]: [AV] Found ["ffmpeg"], using: Ffmpeg
    2016-07-22T13:15:13.774159+00:00 app[web.1]: [AV] Running command: if command -v avprobe 2>/dev/null; then echo "true"; else echo "false"; fi
    2016-07-22T13:15:13.775225+00:00 app[web.1]: [AV] Running command: if command -v ffmpeg 2>/dev/null; then echo "true"; else echo "false"; fi
    2016-07-22T13:15:13.776771+00:00 app[web.1]: [AV] Found ["ffmpeg"], using: Ffmpeg
    2016-07-22T13:15:13.776807+00:00 app[web.1]: [AV] Running command: ffmpeg -i "/tmp/33028ec79c8028f75908c90d9f018aeb20160722-3-xbemwt.mp4" 2>&1
    2016-07-22T13:15:13.814982+00:00 app[web.1]: [paperclip] [transcoder] Transocding supported file /tmp/33028ec79c8028f75908c90d9f018aeb20160722-3-xbemwt.mp4
    2016-07-22T13:15:13.815056+00:00 app[web.1]: [AV] Adding output parameter ["acodec", "aac"]
    2016-07-22T13:15:13.815103+00:00 app[web.1]: [AV] Adding output parameter ["strict", "experimental"]
    2016-07-22T13:15:13.815289+00:00 app[web.1]: [AV] Adding output parameter [:s, "640x480"]
    2016-07-22T13:15:13.815379+00:00 app[web.1]: [AV] Running command: ffmpeg -i "/tmp/33028ec79c8028f75908c90d9f018aeb20160722-3-xbemwt.mp4" -acodec aac -strict experimental -s 640x480 -y "/tmp/33028ec79c8028f75908c90d9f018aeb20160722-3-xbemwt20160722-3-1pwdg2k.mp4"
    2016-07-22T13:15:43.237749+00:00 heroku[router]: at=error code=H12 desc="Request timeout" method=POST path="/courses/5/sections/7/lessons/11" host=xxxxx.herokuapp.com request_id=a1408ac7-c7c3-40f4-8365-86156d2d2314 fwd="43.255.56.1" dyno=web.1 connect=0ms service=188655ms status=503 bytes=0
  • dnn/native : unify error return to DNN_ERROR

    25 août 2020, par Ting Fu
    dnn/native : unify error return to DNN_ERROR
    

    Unify all error return as DNN_ERROR, in order to cease model executing
    when return error in ff_dnn_execute_model_native layer_func.pf_exec

    Signed-off-by : Ting Fu <ting.fu@intel.com>

    • [DH] libavfilter/dnn/dnn_backend_native.c
    • [DH] libavfilter/dnn/dnn_backend_native_layer_avgpool.c
    • [DH] libavfilter/dnn/dnn_backend_native_layer_conv2d.c
    • [DH] libavfilter/dnn/dnn_backend_native_layer_depth2space.c
    • [DH] libavfilter/dnn/dnn_backend_native_layer_mathbinary.c
    • [DH] libavfilter/dnn/dnn_backend_native_layer_mathunary.c
    • [DH] libavfilter/dnn/dnn_backend_native_layer_pad.c