Recherche avancée

Médias (0)

Mot : - Tags -/presse-papier

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (59)

  • Problèmes fréquents

    10 mars 2010, par

    PHP et safe_mode activé
    Une des principales sources de problèmes relève de la configuration de PHP et notamment de l’activation du safe_mode
    La solution consiterait à soit désactiver le safe_mode soit placer le script dans un répertoire accessible par apache pour le site

  • Mediabox : ouvrir les images dans l’espace maximal pour l’utilisateur

    8 février 2011, par

    La visualisation des images est restreinte par la largeur accordée par le design du site (dépendant du thème utilisé). Elles sont donc visibles sous un format réduit. Afin de profiter de l’ensemble de la place disponible sur l’écran de l’utilisateur, il est possible d’ajouter une fonctionnalité d’affichage de l’image dans une boite multimedia apparaissant au dessus du reste du contenu.
    Pour ce faire il est nécessaire d’installer le plugin "Mediabox".
    Configuration de la boite multimédia
    Dès (...)

  • Publier sur MédiaSpip

    13 juin 2013

    Puis-je poster des contenus à partir d’une tablette Ipad ?
    Oui, si votre Médiaspip installé est à la version 0.2 ou supérieure. Contacter au besoin l’administrateur de votre MédiaSpip pour le savoir

Sur d’autres sites (7262)

  • FFMPEG Failure - Extracting frames on large file

    25 avril 2018, par Marian Montagnino

    Calling the ffmpeg command :

    ffmpeg -y -ss "00:00:02" -i 5ccaea226acfc1b4b75ccd1a9f09512c.mxf -frames 30 -f image2 -vf "fps=1/1.25,scale='min(420,iw)':-1" video%04d.jpg

    Causes a failure :

    ffmpeg failed: ffmpeg version N-85692-g78a5fc4 Copyright (c) 2000-2017 the FFmpeg developers
    built with gcc 4.8.5 (GCC) 20150623 (Red Hat 4.8.5-11)
    configuration: --prefix=/tmp/gm-ffmpeg-1.0.4/BUILD/ffmpeg_build --pkg-config-flags=--static --extra-cflags=-I/tmp/gm-ffmpeg-1.0.4/BUILD/ffmpeg_build/include --extra-ldflags=-L/tmp/gm-ffmpeg-1.0.4/BUILD/ffmpeg_build/lib --bindir=/tmp/gm-ffmpeg-1.0.4/BUILDROOT/gm-ffmpeg-1.0.4-1.el7.centos.x86_64/opt/graymeta/bin --enable-gpl --enable-libass --enable-libfdk-aac --enable-libfreetype --enable-libmp3lame --enable-libopus --enable-libtheora --enable-libvorbis --enable-libvpx --enable-libx264 --enable-libx265 --enable-nonfree
    libavutil 55. 61.100 / 55. 61.100
    libavcodec 57. 93.100 / 57. 93.100
    libavformat 57. 72.101 / 57. 72.101
    libavdevice 57. 7.100 / 57. 7.100
    libavfilter 6. 87.100 / 6. 87.100
    libswscale 4. 7.101 / 4. 7.101
    libswresample 2. 8.100 / 2. 8.100
    libpostproc 54. 6.100 / 54. 6.100
    [mxf @ 0x2c6da60] broken or empty index
    Input #0, mxf, from '/alloc/5ccaea226acfc1b4b75ccd1a9f09512c.mxf':
    Metadata:
    uid : 27b07007-2dc8-4305-a78a-81a612d78b94
    generation_uid : ef5ae870-4075-4513-ea1f-39c0ed197267
    company_name : Colorfront
    product_name : Transkoder
    product_uid : 3a4fe380-0d01-11e4-869f-3cd92b5c1dfc
    product_version : 2.7.3.20150121
    application_platform: Microsoft Windows 7 Professional Service Pack 1 (Build 7601)
    modification_date: 2016-09-09T11:29:39.000000Z
    material_package_umid: 0x060A2B340101010501010F20130000008991E1DCEA584837149E72E7F9F0E09D
    timecode : 00:00:17;12
    Duration: 00:11:58.92, start: 0.000000, bitrate: 150802 kb/s
    Stream #0:0: Video: jpeg2000, yuv422p10le(progressive), 3840x2160, SAR 1:1 DAR 16:9, 59.94 fps, 59.94 tbr, 59.94 tbn, 59.94 tbc
    Metadata:
    file_package_umid: 0x060A2B340101010501010F2013000000F8B3B48BE8044408DDD6303A6D43F566
    track_name : Picture
    Stream mapping:
    Stream #0:0 -> #0:0 (jpeg2000 (native) -> mjpeg (native))
    Press [q] to stop, [?] for help
    : signal: killed

    I’m not sure how to interpret this error message and why it actually failed. This file is about 90GB large and shot in 4K resolution but 11 seconds long.

  • Install ffmpeg on Centos6 x64 using FFmpegInstaller 8.0 Issue [on hold]

    21 mars 2017, par woshka

    I have the following issue while installing ffmpeginstaller8.0 on centos 6 x64
    on the mplayer installtion it fails as followes on cpu.c
    what is the issue and how to solve it ?

    Thanks

    EDIT : I have found the best solution to install ffmpeg and all of it’s libraries with this link enter link description here

    YASM    libavcodec/x86/vp9lpf_16bpp.o
    YASM    libavcodec/x86/vp9itxfm_16bpp.o
    YASM    libavcodec/x86/vp9lpf.o
    YASM    libavcodec/x86/hevc_mc.o
    YASM    libavcodec/x86/vp9itxfm.o
    AR      libavcodec/libavcodec.a
    make[1]: Leaving directory `/usr/src/ffmpegscript/mplayer/ffmpeg'
    make -C ffmpeg libavutil/libavutil.a
    make[1]: Entering directory `/usr/src/ffmpegscript/mplayer/ffmpeg'
    CC      libavutil/cpu.o
    libavutil/cpu.c:20:23: warning: stdatomic.h: No such file or directory
    libavutil/cpu.c:28:5: warning: "HAVE_SCHED_GETAFFINITY" is not defined
    libavutil/cpu.c:34:5: warning: "HAVE_GETPROCESSAFFINITYMASK" is not defined
    libavutil/cpu.c:34:36: warning: "HAVE_WINRT" is not defined
    libavutil/cpu.c:37:5: warning: "HAVE_SYSCTL" is not defined
    libavutil/cpu.c:48: error: expected '=', ',', ';', 'asm' or '__attribute__' before 'cpu_flags'
    libavutil/cpu.c: In function 'av_force_cpu_flags':
    libavutil/cpu.c:86: error: implicit declaration of function 'atomic_store_explicit'
    libavutil/cpu.c:86: error: 'cpu_flags' undeclared (first use in this function)
    libavutil/cpu.c:86: error: (Each undeclared identifier is reported only once
    libavutil/cpu.c:86: error: for each function it appears in.)
    libavutil/cpu.c:86: error: 'memory_order_relaxed' undeclared (first use in this function)
    libavutil/cpu.c: In function 'av_get_cpu_flags':
    libavutil/cpu.c:91: error: implicit declaration of function 'atomic_load_explicit'
    libavutil/cpu.c:91: error: 'cpu_flags' undeclared (first use in this function)
    libavutil/cpu.c:91: error: 'memory_order_relaxed' undeclared (first use in this function)
    libavutil/cpu.c: In function 'av_set_cpu_flags_mask':
    libavutil/cpu.c:101: error: 'cpu_flags' undeclared (first use in this function)
    libavutil/cpu.c:102: error: 'memory_order_relaxed' undeclared (first use in this function)
    libavutil/cpu.c:265:5: warning: "HAVE_WINRT" is not defined
    libavutil/cpu.c:268:5: warning: "HAVE_SCHED_GETAFFINITY" is not defined
    libavutil/cpu.c:275:7: warning: "HAVE_GETPROCESSAFFINITYMASK" is not defined
    libavutil/cpu.c:279:7: warning: "HAVE_SYSCTL" is not defined
    libavutil/cpu.c:285:7: warning: "HAVE_SYSCONF" is not defined
    libavutil/cpu.c:287:7: warning: "HAVE_SYSCONF" is not defined
    libavutil/cpu.c:289:7: warning: "HAVE_WINRT" is not defined
    make[1]: *** [libavutil/cpu.o] Error 1
    make[1]: Leaving directory `/usr/src/ffmpegscript/mplayer/ffmpeg'
    make: *** [ffmpeg/libavutil/libavutil.a] Error 2
    cp: cannot create regular file `/usr/local/cpffmpeg/etc/mplayer/codecs.conf': No such file or directory
    Installation of mplayer.tar.gz ....... Completed


      Mplayer installation Failed :( ,  please contact  professional support sales@syslint.com
  • Introducing the BigQuery & Data Warehouse Export feature

    30 janvier, par Matomo Core Team

    Matomo is built on a simple truth : your data belongs to you, and you should have complete control over it. That’s why we’re excited to launch our new BigQuery & Data Warehouse Export feature for Matomo Cloud, giving you even more ways to work with your analytics data. 

    Until now, getting raw data from Matomo Cloud required APIs and custom scripts, or waiting for engineering help.  

    Our new BigQuery & Data Warehouse Export feature removes those barriers. You can now access your raw, unaggregated data and schedule regular exports straight to your data warehouse. 

    The feature works with all major data warehouses including (but not limited to) : 

    • Google BigQuery 
    • Amazon Redshift 
    • Snowflake 
    • Azure Synapse Analytics 
    • Apache Hive 
    • Teradata 

    You can schedule exports, combine your Matomo data with other data sources in your data warehouse, and easily query data with SQL-like queries. 

    Direct raw data access for greater data portability 

    Waiting for engineering support can delay your work. Managing API connections and writing scripts can be time-consuming. This keeps you from focusing on what you do best—analysing data. 

    BigQuery create-table-menu

    With the BigQuery & Data Warehouse Export feature, you get direct access to your raw Matomo data without the technical setup. So, you can spend more time analysing data and finding insights that matter. 

    Bringing your data together 

    Answering business questions often requires data from multiple sources. A single customer interaction might span your CRM, web analytics, sales systems, and more. Piecing this data together manually is time-consuming—what starts as a seemingly simple question from stakeholders can turn into hours of work collecting and comparing data across different tools. 

    This feature lets you combine your Matomo data with data from other business systems in your data warehouse. Instead of switching between tools or manually comparing spreadsheets, you can analyse all your data in one place to better understand how customers interact with your business. 

    Easy, custom analysis with SQL-like queries 

    Standard, pre-built reports often don’t address the specific, detailed questions that analysts need to answer.  

    When you use the BigQuery & Data Warehouse Export feature, you can use SQL-like queries in your data warehouse to do detailed, customised analysis. This flexibility allows you to explore your data in depth and uncover specific insights that aren’t possible with pre-built reports. 

    Here is an example of how you might use SQL-like query to compare the behaviours of paying vs. non-paying users : 

    				
                                            <xmp>SELECT  

    custom_dimension_value AS user_type, -- Assuming 'user_type' is stored in a custom dimension

    COUNT(*) AS total_visits,  

    AVG(visit_total_time) AS avg_duration,

    SUM(conversion.revenue) AS total_spent  

    FROM  

    `your_project.your_dataset.matomo_log_visit` AS visit

    LEFT JOIN  

    `your_project.your_dataset.matomo_log_conversion` AS conversion  

    ON  

    visit.idvisit = conversion.idvisit  

    GROUP BY  

    custom_dimension_value; </xmp>
                                   

    This query helps you compare metrics such as the number of visits, average session duration, and total amount spent between paying and non-paying users. It provides a full view of behavioural differences between these groups. 

    Advanced data manipulation and visualisation 

    When you need to create detailed reports or dive deep into data analysis, working within the constraints of a fixed user interface (UI) can limit your ability to draw insights. 

    Exporting your Matomo data to a data warehouse like BigQuery provides greater flexibility for in-depth manipulation and advanced visualisations, enabling you to uncover deeper insights and tailor your reports more effectively. 

    Getting started 

    To set up data warehouse exports in your Matomo : 

    1. Go to System Admin (cog icon in the top right corner) 
    2. Select ‘Export’ from the left-hand menu 
    3. Choose ‘BigQuery & Data Warehouse’ 

    You’ll find detailed instructions in our data warehouse exports guide 

    Please note, enabling this feature will cost an additional 10% of your current subscription. You can view the exact cost by following the steps above. 

    New to Matomo ? Start your 21-day free trial now (no credit card required), or request a demo.