Recherche avancée

Médias (0)

Mot : - Tags -/acrobat

Aucun média correspondant à vos critères n’est disponible sur le site.

Autres articles (87)

  • L’agrémenter visuellement

    10 avril 2011

    MediaSPIP est basé sur un système de thèmes et de squelettes. Les squelettes définissent le placement des informations dans la page, définissant un usage spécifique de la plateforme, et les thèmes l’habillage graphique général.
    Chacun peut proposer un nouveau thème graphique ou un squelette et le mettre à disposition de la communauté.

  • Websites made ​​with MediaSPIP

    2 mai 2011, par

    This page lists some websites based on MediaSPIP.

  • Creating farms of unique websites

    13 avril 2011, par

    MediaSPIP platforms can be installed as a farm, with a single "core" hosted on a dedicated server and used by multiple websites.
    This allows (among other things) : implementation costs to be shared between several different projects / individuals rapid deployment of multiple unique sites creation of groups of like-minded sites, making it possible to browse media in a more controlled and selective environment than the major "open" (...)

Sur d’autres sites (11170)

  • swresample/resample : speed up Blackman Nuttall filter

    9 novembre 2015, par Ganesh Ajjanagadde
    swresample/resample : speed up Blackman Nuttall filter
    

    This may be a slightly surprising optimization, but is actually based on
    an understanding of how math libraries compute trigonometric functions.
    Explanation is given here so that future development uses libm more effectively
    across the codebase.

    All libm’s essentially compute transcendental functions via some kind of
    polynomial approximation, be it Taylor-Maclaurin or Chebyshev.
    Correction terms are added via polynomial correction factors when needed
    to squeeze out the last bits of accuracy. Lookup tables are also
    inserted strategically.

    In the case of trigonometric functions, periodicity is exploited via
    first doing a range reduction to an interval around zero, and then using
    some polynomial approximation.

    This range reduction is the most natural way of doing things - else one
    would need polynomials for ranges in different periods which makes no
    sense whatsoever.

    To avoid the need for the range reduction, it is helpful to feed in
    arguments as close to the origin as possible for the trigonometric
    functions. In fact, this also makes sense from an accuracy point of view :
    IEEE floating point has far more resolution for small numbers than big ones.

    This patch does this for the Blackman-Nuttall filter, and yields a
    non-negligible speedup.

    Sample benchmark (x86-64, Haswell, GNU/Linux)
    test : fate-swr-resample-dblp-2626-44100
    old :
    18893514 decicycles in build_filter (loop 1000), 256 runs, 0 skips
    18599863 decicycles in build_filter (loop 1000), 512 runs, 0 skips
    18445574 decicycles in build_filter (loop 1000), 1000 runs, 24 skips

    new :
    16290697 decicycles in build_filter (loop 1000), 256 runs, 0 skips
    16267172 decicycles in build_filter (loop 1000), 512 runs, 0 skips
    16251105 decicycles in build_filter (loop 1000), 1000 runs, 24 skips

    Reviewed-by : Michael Niedermayer <michael@niedermayer.cc>
    Signed-off-by : Ganesh Ajjanagadde <gajjanagadde@gmail.com>

    • [DH] libswresample/resample.c
  • swresample/resample : improve bessel function accuracy and speed

    2 novembre 2015, par Ganesh Ajjanagadde
    swresample/resample : improve bessel function accuracy and speed
    

    This improves accuracy for the bessel function at large arguments, and this in turn
    should improve the quality of the Kaiser window. It also improves the
    performance of the bessel function and hence build_filter by 20%.
    Details are given below.

    Algorithm : taken from the Boost project, who have done a detailed
    investigation of the accuracy of their method, as compared with e.g the
    GNU Scientific Library (GSL) :
    http://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/mbessel.html.
    Boost source code (also cited and licensed in the code) :
    https://searchcode.com/codesearch/view/14918379/.

    Accuracy : sample values may be obtained as follows. i0 denotes the old bessel code,
    i0_boost the approach here, and i0_real an arbitrary precision result (truncated) from Wolfram Alpha :
    type "bessel i0(6.0)" to reproduce. These are evaluation points that occur for
    the default kaiser_beta = 9.

    Some illustrations :
    bessel(8.0)
    i0 (8.000000) = 427.564115721804739678191254
    i0_boost(8.000000) = 427.564115721804796521610115
    i0_real (8.000000) = 427.564115721804785177396791

    bessel(6.0)
    i0 (6.000000) = 67.234406976477956163762428
    i0_boost(6.000000) = 67.234406976477970374617144
    i0_real (6.000000) = 67.234406976477975326188025

    Reason for accuracy : Main accuracy benefits come at larger bessel arguments, where the
    Taylor-Maclaurin method is not that good : 23+ iterations
    (at large arguments, since the series is about 0) can cause
    significant floating point error accumulation.

    Benchmarks : Obtained on x86-64, Haswell, GNU/Linux via a loop calling
    build_filter 1000 times :
    test : fate-swr-resample-dblp-44100-2626

    new :
    995894468 decicycles in build_filter(loop 1000), 256 runs, 0 skips
    1029719302 decicycles in build_filter(loop 1000), 512 runs, 0 skips
    984101131 decicycles in build_filter(loop 1000), 1024 runs, 0 skips

    old :
    1250020763 decicycles in build_filter(loop 1000), 256 runs, 0 skips
    1246353282 decicycles in build_filter(loop 1000), 512 runs, 0 skips
    1220017565 decicycles in build_filter(loop 1000), 1024 runs, 0 skips

    A further 5% may be squeezed by enabling -ftree-vectorize. However,
    this is a separate issue from this patch.

    Reviewed-by : Michael Niedermayer <michael@niedermayer.cc>
    Signed-off-by : Ganesh Ajjanagadde <gajjanagadde@gmail.com>

    • [DH] libswresample/resample.c
  • swresample/resample : speed up build_filter for Blackman-Nuttall filter

    5 novembre 2015, par Ganesh Ajjanagadde
    swresample/resample : speed up build_filter for Blackman-Nuttall filter
    

    This uses the trigonometric double and triple angle formulae to avoid
    repeated (expensive) evaluation of libc’s cos().

    Sample benchmark (x86-64, Haswell, GNU/Linux)
    test : fate-swr-resample-dblp-44100-2626
    old :
    1104466600 decicycles in build_filter(loop 1000), 256 runs, 0 skips
    1096765286 decicycles in build_filter(loop 1000), 512 runs, 0 skips
    1070479590 decicycles in build_filter(loop 1000), 1024 runs, 0 skips

    new :
    588861423 decicycles in build_filter(loop 1000), 256 runs, 0 skips
    591262754 decicycles in build_filter(loop 1000), 512 runs, 0 skips
    577355145 decicycles in build_filter(loop 1000), 1024 runs, 0 skips

    This results in small differences with the old expression :
    difference (worst case on [0, 2*M_PI]), argmax 0.008 :
    max diff (relative) : 0.000000000000157289807188
    blackman_old(0.008) : 0.000363951585488813192382
    blackman_new(0.008) : 0.000363951585488755946507

    These are judged to be insignificant for the performance gain. PSNR to
    reference file is unchanged up to second decimal point for instance.

    Reviewed-by : Michael Niedermayer <michael@niedermayer.cc>
    Signed-off-by : Ganesh Ajjanagadde <gajjanagadde@gmail.com>

    • [DH] libswresample/resample.c