Recherche avancée

Médias (91)

Autres articles (70)

  • Dépôt de média et thèmes par FTP

    31 mai 2013, par

    L’outil MédiaSPIP traite aussi les média transférés par la voie FTP. Si vous préférez déposer par cette voie, récupérez les identifiants d’accès vers votre site MédiaSPIP et utilisez votre client FTP favori.
    Vous trouverez dès le départ les dossiers suivants dans votre espace FTP : config/ : dossier de configuration du site IMG/ : dossier des média déjà traités et en ligne sur le site local/ : répertoire cache du site web themes/ : les thèmes ou les feuilles de style personnalisées tmp/ : dossier de travail (...)

  • Keeping control of your media in your hands

    13 avril 2011, par

    The vocabulary used on this site and around MediaSPIP in general, aims to avoid reference to Web 2.0 and the companies that profit from media-sharing.
    While using MediaSPIP, you are invited to avoid using words like "Brand", "Cloud" and "Market".
    MediaSPIP is designed to facilitate the sharing of creative media online, while allowing authors to retain complete control of their work.
    MediaSPIP aims to be accessible to as many people as possible and development is based on expanding the (...)

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

Sur d’autres sites (6916)

  • "FFmpeg : Error not transitioning to the next song in Discord Bot's queue."

    1er avril 2024, par noober

    I have 3 modules, but I'm sure the error occurs within this module, and here is the entire code within that module :

    


    import asyncio
import discord
from discord import FFmpegOpusAudio, Embed
import os

async def handle_help(message):
    embed = discord.Embed(
        title="Danh sách lệnh cho Bé Mèo",
        description="Dưới đây là các lệnh mà chủ nhân có thể bắt Bé Mèo phục vụ:",
        color=discord.Color.blue()
    )
    embed.add_field(name="!play", value="Phát một bài hát từ YouTube.", inline=False)
    embed.add_field(name="!pause", value="Tạm dừng bài hát đang phát.", inline=False)
    embed.add_field(name="!resume", value="Tiếp tục bài hát đang bị tạm dừng.", inline=False)
    embed.add_field(name="!skip", value="Chuyển đến bài hát tiếp theo trong danh sách chờ.", inline=False)
    embed.add_field(name="!stop", value="Dừng phát nhạc và cho phép Bé Mèo đi ngủ tiếp.", inline=False)
    # Thêm các lệnh khác theo cùng mẫu trên
    await message.channel.send(embed=embed)

class Song:
    def __init__(self, title, player):
        self.title = title  # Lưu trữ tiêu đề bài hát ở đây
        self.player = player

# Thêm đối tượng Song vào hàng đợi
def add_song_to_queue(guild_id, queues, song):
    queues.setdefault(guild_id, []).append(song)

async def handle_list(message, queues):
    log_file_path = "C:\\Bot Music 2\\song_log.txt"
    if os.path.exists(log_file_path):
        with open(log_file_path, "r", encoding="utf-8") as f:
            song_list = f.readlines()

        if song_list:
            embed = discord.Embed(
                title="Danh sách bài hát",
                description="Danh sách các bài hát đã phát:",
                color=discord.Color.blue()
            )

            for i, song in enumerate(song_list, start=1):
                if i == 1:
                    song = "- Đang phát: " + song.strip()
                embed.add_field(name=f"Bài hát {i}", value=song, inline=False)

            await message.channel.send(embed=embed)
        else:
            await message.channel.send("Hiện không có dữ liệu trong file log.")
    else:
        await message.channel.send("File log không tồn tại.")

async def handle_commands(message, client, queues, voice_clients, yt_dl_options, ytdl, ffmpeg_options=None, guild_id=None, data=None):
    # Nếu không có ffmpeg_options, sử dụng các thiết lập mặc định
    if ffmpeg_options is None:
        ffmpeg_options = {
            'before_options': '-reconnect 1 -reconnect_streamed 1 -reconnect_delay_max 5',
            'options': '-vn -filter:a "volume=0.25"'
        }
    
    # Khởi tạo voice_client
    if guild_id is None:
        guild_id = message.guild.id

    if guild_id in voice_clients:
        voice_client = voice_clients[guild_id]
    else:
        voice_client = None

    # Xử lý lệnh !play
    if message.content.startswith("!play"):
        try:
            # Kiểm tra xem người gửi tin nhắn có đang ở trong kênh voice không
            voice_channel = message.author.voice.channel
            # Kiểm tra xem bot có đang ở trong kênh voice của guild không
            if voice_client and voice_client.is_connected():
                await voice_client.move_to(voice_channel)
            else:
                voice_client = await voice_channel.connect()
                voice_clients[guild_id] = voice_client
        except Exception as e:
            print(e)

        try:
            query = ' '.join(message.content.split()[1:])
            if query.startswith('http'):
                url = query
            else:
                query = 'ytsearch:' + query
                loop = asyncio.get_event_loop()
                data = await loop.run_in_executor(None, lambda: ytdl.extract_info(query, download=False))
                if not data:
                    raise ValueError("Không có dữ liệu trả về từ YouTube.")
                url = data['entries'][0]['url']

            player = FFmpegOpusAudio(url, **ffmpeg_options)
            # Lấy thông tin của bài hát mới đang được yêu cầu
            title = data['entries'][0]['title']
            duration = data['entries'][0]['duration']
            creator = data['entries'][0]['creator'] if 'creator' in data['entries'][0] else "Unknown"
            requester = message.author.nick if message.author.nick else message.author.name
                    
            # Tạo embed để thông báo thông tin bài hát mới
            embed = discord.Embed(
                title="Thông tin bài hát mới",
                description=f"**Bài hát:** *{title}*\n**Thời lượng:** *{duration}*\n**Tác giả:** *{creator}*\n**Người yêu cầu:** *{requester}*",
                color=discord.Color.green()
            )
            await message.channel.send(embed=embed)
            
            # Sau khi lấy thông tin của bài hát diễn ra, gọi hàm log_song_title với title của bài hát
            # Ví dụ:
            title = data['entries'][0]['title']
            await log_song_title(title)

            # Thêm vào danh sách chờ nếu có bài hát đang phát
            if voice_client.is_playing():
                queues.setdefault(guild_id, []).append(player)
            else:
                voice_client.play(player)
                
        except Exception as e:
            print(e)
            
    if message.content.startswith("!link"):
            try:
                voice_client = await message.author.voice.channel.connect()
                voice_clients[voice_client.guild.id] = voice_client
            except Exception as e:
                print(e)

            try:
                url = message.content.split()[1]

                loop = asyncio.get_event_loop()
                data = await loop.run_in_executor(None, lambda: ytdl.extract_info(url, download=False))

                song = data['url']
                player = discord.FFmpegOpusAudio(song, **ffmpeg_options)

                voice_clients[message.guild.id].play(player)
            except Exception as e:
                print(e)

    # Xử lý lệnh !queue
    elif message.content.startswith("!queue"):
        queue = queues.get(guild_id, [])
        if queue:
            await message.channel.send("Danh sách chờ:")
            for index, item in enumerate(queue, 1):
                await message.channel.send(f"{index}. {item.title}")
        else:
            await message.channel.send("Không có bài hát nào trong danh sách chờ.")

    # Xử lý lệnh !skip
    elif message.content.startswith("!skip"):
        try:
            if voice_client and voice_client.is_playing():
                voice_client.stop()
                await play_next_song(guild_id, queues, voice_client, skip=True)
                await remove_first_line_from_log()
        except Exception as e:
            print(e)

    # Xử lý các lệnh như !pause, !resume, !stop
    elif message.content.startswith("!pause"):
        try:
            if voice_client and voice_client.is_playing():
                voice_client.pause()
        except Exception as e:
            print(e)

    elif message.content.startswith("!resume"):
        try:
            if voice_client and not voice_client.is_playing():
                voice_client.resume()
        except Exception as e:
            print(e)

    elif message.content.startswith("!stop"):
        try:
            if voice_client:
                voice_client.stop()
                await voice_client.disconnect()
                del voice_clients[guild_id]  # Xóa voice_client sau khi dừng
        except Exception as e:
            print(e)

async def log_song_title(title):
    log_file_path = "C:\\Bot Music 2\\song_log.txt"
    try:
        # Kiểm tra xem tệp tin log đã tồn tại chưa
        if not os.path.exists(log_file_path):
            # Nếu chưa tồn tại, tạo tệp tin mới và ghi title vào tệp tin đó
            with open(log_file_path, 'w', encoding='utf-8') as file:
                file.write(title + '\n')
        else:
            # Nếu tệp tin log đã tồn tại, mở tệp tin và chèn title vào cuối tệp tin
            with open(log_file_path, 'a', encoding='utf-8') as file:
                file.write(title + '\n')
    except Exception as e:
        print(f"Error logging song title: {e}")

async def remove_first_line_from_log():
    log_file_path = "C:\\Bot Music 2\\song_log.txt"
    try:
        with open(log_file_path, "r", encoding="utf-8") as f:
            lines = f.readlines()
        # Xóa dòng đầu tiên trong list lines
        lines = lines[1:]
        with open(log_file_path, "w", encoding="utf-8") as f:
            for line in lines:
                f.write(line)
    except Exception as e:
        print(f"Error removing first line from log: {e}")
        
async def clear_log_file():
    log_file_path = "C:\\Bot Music 2\\song_log.txt"
    try:
        with open(log_file_path, "w", encoding="utf-8") as f:
            f.truncate(0)
    except Exception as e:
        print(f"Error clearing log file: {e}")


async def play_next_song(guild_id, queues, voice_client, skip=False):
    queue = queues.get(guild_id, [])
    if queue:
        player = queue.pop(0)
        voice_client.play(player, after=lambda e: asyncio.run_coroutine_threadsafe(play_next_song(guild_id, queues, voice_client, skip=False), voice_client.loop))
        if skip:
            return
        else:
            await remove_first_line_from_log()  # Xóa dòng đầu tiên trong file log
    elif skip:
        await remove_first_line_from_log()  # Xóa dòng đầu tiên trong file log
        await voice_client.disconnect()
        del voice_client[guild_id]  # Xóa voice_client sau khi dừng
    else:
        await clear_log_file()  # Xóa dòng đầu tiên trong file log
        await voice_client.disconnect()
        del voice_client[guild_id]  # Xóa voice_client sau khi dừng


    


    I have tried asking ChatGPT, Gemini, or Bing, and they always lead me into a loop of errors that cannot be resolved. This error only occurs when the song naturally finishes playing due to its duration. If the song is playing and I use the command !skip, the next song in the queue will play and function normally. I noticed that it seems like if a song ends naturally, the song queue is also cleared immediately. I hope someone can help me with this

    


  • Clickstream Data : Definition, Use Cases, and More

    15 avril 2024, par Erin

    Gaining a deeper understanding of user behaviour — customers’ different paths, digital footprints, and engagement patterns — is crucial for providing a personalised experience and making informed marketing decisions. 

    In that sense, clickstream data, or a comprehensive record of a user’s online activities, is one of the most valuable sources of actionable insights into users’ behavioural patterns. 

    This article will cover everything marketing teams need to know about clickstream data, from the basic definition and examples to benefits, use cases, and best practices. 

    What is clickstream data ? 

    As a form of web analytics, clickstream data focuses on tracking and analysing a user’s online activity. These digital breadcrumbs offer insights into the websites the user has visited, the pages they viewed, how much time they spent on a page, and where they went next.

    Illustration of collecting and analysing data

    Your clickstream pipeline can be viewed as a “roadmap” that can help you recognise consistent patterns in how users navigate your website. 

    With that said, you won’t be able to learn much by analysing clickstream data collected from one user’s session. However, a proper analysis of large clickstream datasets can provide a wealth of information about consumers’ online behaviours and trends — which marketing teams can use to make informed decisions and optimise their digital marketing strategy. 

    Clickstream data collection can serve numerous purposes, but the main goal remains the same — gaining valuable insights into visitors’ behaviours and online activities to deliver a better user experience and improve conversion likelihood. 

    Depending on the specific events you’re tracking, clickstream data can reveal the following : 

    • How visitors reach your website 
    • The terms they type into the search engine
    • The first page they land on
    • The most popular pages and sections of your website
    • The amount of time they spend on a page 
    • Which elements of the page they interact with, and in what sequence
    • The click path they take 
    • When they convert, cancel, or abandon their cart
    • Where the user goes once they leave your website

    As you can tell, once you start collecting this type of data, you’ll learn quite a bit about the user’s online journey and the different ways they engage with your website — all without including any personal details about your visitors.

    Types of clickstream data 

    While all clickstream data keeps a record of the interactions that occur while the user is navigating a website or a mobile application — or any other digital platform — it can be divided into two types : 

    • Aggregated (web traffic) data provides comprehensive insights into the total number of visits and user interactions on a digital platform — such as your website — within a given timeframe 
    • Unaggregated data is broken up into smaller segments, focusing on an individual user’s online behaviour and website interactions 

    One thing to remember is that to gain valuable insights into user behaviour and uncover sequential patterns, you need a powerful tool and access to full clickstream datasets. Matomo’s Event Tracking can provide a comprehensive view of user interactions on your website or mobile app — everything from clicking a button and completing a form to adding (or removing) products from their cart. 

    On that note, based on the specific events you’re tracking when a user visits your website, clickstream data can include : 

    • Web navigation data : referring URL, visited pages, click path, and exit page
    • User interaction data : mouse movements, click rate, scroll depth, and button clicks
    • Conversion data : form submissions, sign-ups, and transactions 
    • Temporal data : page load time, timestamps, and the date and time of day of the user’s last login 
    • Session data : duration, start, and end times and number of pages viewed per session
    • Error data : 404 errors and network or server response issues 

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Clickstream data benefits and use cases 

    Given the actionable insights that clickstream data collection provides, it can serve a wide range of use cases — from identifying behavioural patterns and trends and examining competitors’ performance to helping marketing teams map out customer journeys and improve ROI.

    Example of using clickstream data for marketing ROI

    According to the global Clickstream Analytics Market Report 2024, some key applications of clickstream analytics include click-path optimisation, website and app optimisation, customer analysis, basket analysis, personalisation, and traffic analysis. 

    The behavioural patterns and user preferences revealed by clickstream analytics data can have many applications — we’ve outlined the prominent use cases below. 

    Customer journey mapping 

    Clickstream data allows you to analyse the e-commerce customer’s online journey and provides insights into how they navigate your website. With such a comprehensive view of their click path, it becomes easier to understand user behaviour at each stage — from initial awareness to conversion — identify the most effective touchpoints and fine-tune that journey to improve their conversion likelihood. 

    Identifying customer trends 

    Clickstream data analytics can also help you identify trends and behavioural patterns — the most common sequences and similarities in how users reached your website and interacted with it — especially when you can access data from many website visitors. 

    Think about it — there are many ways in which you can use these insights into the sequence of clicks and interactions and recurring patterns to your team’s advantage. 

    Here’s an example : 

    It can reveal that some pieces of content and CTAs are performing well in encouraging visitors to take action — which shows how you should optimise other pages and what you should strive to create in the future, too. 

    Preventing site abandonment 

    Cart abandonment remains a serious issue for online retailers : 

    According to a recent report, the global cart abandonment rate in the fourth quarter of 2023 was at 83%. 

    That means that roughly eight out of ten e-commerce customers will abandon their shopping carts — most commonly due to additional costs, slow website loading times and the requirement to create an account before purchasing. 

    In addition to cart abandonment predictions, clickstream data analytics can reveal the pages where most visitors tend to leave your website. These drop-off points are clear indicators that something’s not working as it should — and once you can pinpoint them, you’ll be able to address the issue and increase conversion likelihood.

    Improving marketing campaign ROI 

    As previously mentioned, clickstream data analysis provides insights into the customer journey. Still, you may not realise that you can also use this data to keep track of your marketing effectiveness

    Global digital ad spending continues to grow — and is expected to reach $836 billion by 2026. It’s easy to see why relying on accurate data is crucial when deciding which marketing channels to invest in. 

    You want to ensure you’re allocating your digital marketing and advertising budget to the channels — be it SEO, pay-per-click (PPC) ads, or social media campaigns — that impact driving conversions. 

    When you combine clickstream e-commerce data with conversion rates, you’ll find the latter in Matomo’s goal reports and have a solid, data-driven foundation for making better marketing decisions.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Delivering a better user experience (UX) 

    Clickstream data analysis allows you to identify specific “pain points” — areas of the website that are difficult to use and may cause customer frustration. 

    It’s clear how this would be beneficial to your business : 

    Once you’ve identified these pain points, you can make the necessary changes to your website’s layout and address any technical issues that users might face, improving usability and delivering a smoother experience to potential customers. 

    Collecting clickstream data : Tools and legal implications 

    Your team will need a powerful tool capable of handling clickstream analytics to reap the benefits we’ve discussed previously. But at the same time, you need to respect users’ online privacy throughout clickstream data collection.

    Illustration of user’s data protection and online security

    Generally speaking, there are two ways to collect data about users’ online activity — web analytics tools and server log files.

    Web analytics tools are the more commonly used solution. Specifically designed to collect and analyse website data, these tools rely on JavaScript tags that run in the browser, providing actionable insights about user behaviour. Server log files can be a gold mine of data, too — but that data is raw and unfiltered, making it much more challenging to interpret and analyse. 

    That brings us to one of the major clickstream challenges to keep in mind as you move forward — compliance.

    While Google remains a dominant player in the web analytics market, there’s one area where Matomo has a significant advantage — user privacy. 

    Matomo operates according to privacy laws — including the General Data Protection Regulation (GDPR) and California Consumer Privacy Act (CCPA), making it an ethical alternative to Google Analytics. 

    It should go without saying, but compliance with data privacy laws — the most talked-about one being the GDPR framework introduced by the EU — isn’t something you can afford to overlook. 

    The GDPR was first implemented in the EU in 2018. Since then, several fines have been issued for non-compliance — including the record fine of €1.2 billion that Meta Platforms, Inc. received in 2023 for transferring personal data of EU-based users to the US.

    Clickstream analytics data best practices 

    Illustration of collecting, analysing and presenting data

    As valuable as it might be, processing large amounts of clickstream analytics data can be a complex — and, at times, overwhelming — process. 

    Here are some best practices to keep in mind when it comes to clickstream analysis : 

    Define your goals 

    It’s essential to take the time to define your goals and objectives. 

    Once you have a clear idea of what you want to learn from a given clickstream dataset and the outcomes you hope to see, it’ll be easier to narrow down your scope — rather than trying to tackle everything at once — before moving further down the clickstream pipeline. 

    Here are a few examples of goals and objectives you can set for clickstream analysis : 

    • Understanding and predicting users’ behavioural patterns 
    • Optimising marketing campaigns and ROI 
    • Attributing conversions to specific marketing touchpoints and channels

    Analyse your data 

    Collecting clickstream analytics data is only part of the equation ; what you do with raw data and how you analyse it matters. You can have the most comprehensive dataset at your disposal — but it’ll be practically worthless if you don’t have the skill set to analyse and interpret it. 

    In short, this is the stage of your clickstream pipeline where you uncover common sequences and consistent patterns in user behaviour. 

    Clickstream data analytics can extract actionable insights from large datasets using various approaches, models, and techniques. 

    Here are a few examples : 

    • If you’re working with clickstream e-commerce data, you should perform funnel or conversion analyses to track conversion rates as users move through your sales funnel. 
    • If you want to group and analyse users based on shared characteristics, you can use Matomo for cohort analysis
    • If your goal is to predict future trends and outcomes — conversion and cart abandonment prediction, for example — based on available data, prioritise predictive analytics.

    Try Matomo for Free

    Get the web insights you need, without compromising data accuracy.

    No credit card required

    Organise and visualise your data

    As you reach the end of your clickstream pipeline, you need to start thinking about how you will present and communicate your data. And what better way to do that than to transform that data into easy-to-understand visualisations ? 

    Here are a few examples of easily digestible formats that facilitate quick decision-making : 

    • User journey maps, which illustrate the exact sequence of interactions and user flow through your website 
    • Heatmaps, which serve as graphical — and typically colour-coded — representations of a website visitor’s activity 
    • Funnel analysis, which are broader at the top but get increasingly narrower towards the bottom as users flow through and drop off at different stages of the pipeline 

    Collect clickstream data with Matomo 

    Clickstream data is hard to beat when tracking the website visitor’s journey — from first to last interaction — and understanding user behaviour. By providing real-time insights, your clickstream pipeline can help you see the big picture, stay ahead of the curve and make informed decisions about your marketing efforts. 

    Matomo accurate data and compliance with GDPR and other data privacy regulations — it’s an all-in-one, ethical platform that can meet all your web analytics needs. That’s why over 1 million websites use Matomo for their web analytics.

    Try Matomo free for 21 days. No credit card required.

  • "undefined reference to av···@···"ffmpeg error,when i cross compile opencv4.5.3 which include ffmpeg lib

    11 mai 2024, par caiping Peng

    everyone,It is sorry to bother you,but i need some help.
I'm working on an embedded deployment project,doing object detection work to real-time video stream. So I have to port my c++ inference prog to RKNN1808 platform. I compile this program with CMake tool,but I cant finish my work because opencv lib cant be compiled rightly.
To FFmpeg,my configure commend is following :

    


    ./configure --enable-cross-compile --cross-prefix=/home/midsummer/Tool/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu- --target-os=linux --arch=aarch64 --prefix=/usr/local/ffmpeg  --enable-shared


    


    then I am gonna show you the ffmpeg version :

    


    libavutil      56. 70.100
libavcodec     58.134.100
libavformat    58. 76.100
libavdevice    58. 13.100
libavfilter     7.110.100
libswscale      5.  9.100
libswresample   3.  9.100
libpostproc    55.  9.100


    


    next ,I use following commend to build cmake project :

    


    cmake -D CMAKE_BUILD_TYPE=RELEASE  -D CMAKE_C_COMPILER=/home/midsummer/Tool/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-gcc -D CMAKE_CXX_COMPILER=/home/midsummer/Tool/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-g++ -D BUILD_SHARED_LIBS=ON -D CMAKE_CXX_FLAGS=-fPIC -D CMAKE_C_FLAGS=-fPIC -D CMAKE_EXE_LINKER_FLAGS=-lpthread -ldl -D ENABLE_PIC=ON -D WITH_1394=OFF -D WITH_ARAVIS=OFF -D WITH_ARITH_DEC=ON -D WITH_ARITH_ENC=ON -D WITH_CLP=OFF -D WITH_CUBLAS=OFF -D WITH_CUDA=OFF -D WITH_CUFFT=OFF -D WITH_FFMPEG=ON -D WITH_GSTREAMER=ON -D WITH_GSTREAMER_0_10=OFF -D WITH_HALIDE=OFF -D WITH_HPX=OFF -D WITH_IMGCODEC_HDR=ON -D WITH_IMGCODEC_PXM=ON -D WITH_IMGCODEC_SUNRASTER=ON -D WITH_INF_ENGINE=OFF -D WITH_IPP=OFF -D WITH_ITT=OFF -D WITH_JASPER=ON -D WITH_JPEG=ON -D WITH_LAPACK=ON -D WITH_LIBREALSENSE=OFF -D WITH_NVCUVID=OFF -D WITH_OPENCL=OFF -D WITH_OPENCLAMDBLAS=OFF -D WITH_OPENCLAMDFFT=OFF -D WITH_OPENCL_SVM=OFF -D WITH_OPENEXR=OFF -D WITH_OPENGL=OFF -D WITH_OPENMP=OFF -D WITH_OPENNNI=OFF -D WITH_OPENNNI2=OFF -D WITH_OPENVX=OFF -D WITH_PNG=OFF -D WITH_PROTOBUF=OFF -D WITH_PTHREADS_PF=ON -D WITH_PVAPI=OFF -D WITH_QT=OFF -D WITH_QUIRC=OFF  -D WITH_TBB=OFF -D WITH_TIFF=ON -D WITH_VULKAN=OFF -D WITH_WEBP=ON -D WITH_XIMEA=OFF -D CMAKE_INSTALL_PREFIX=../CrossCompileResult  -D WITH_GTK=OFF  -D BUILD_opencv_dnn=OFF ..


    


    following is the outpt about FFmpeg :

    


    --   Video I/O:
--     FFMPEG:                      YES
--       avcodec:                   YES (58.134.100)
--       avformat:                  YES (58.76.100)
--       avutil:                    YES (56.70.100)
--       swscale:                   YES (5.9.100)
--       avresample:                NO
--     GStreamer:                   NO
--     v4l/v4l2:                    YES (linux/videodev2.h)



    


    After building the cmake project,I compiled this project with comment 【make -j16】.After not so long time,I got the Error :

    


    [ 49%] Linking CXX executable ../../bin/opencv_annotation
[ 49%] Building CXX object modules/ts/CMakeFiles/opencv_ts.dir/src/ts_tags.cpp.o
[ 49%] Built target opencv_annotation
[ 49%] Linking CXX executable ../../bin/opencv_visualisation
/home/midsummer/Tool/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin/../lib/gcc/aarch64-linux-gnu/6.3.1/../../../../aarch64-linux-gnu/bin/ld: warning: libavcodec.so.58, needed by ../../lib/libopencv_videoio.so.4.5.3, not found (try using -rpath or -rpath-link)
/home/midsummer/Tool/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin/../lib/gcc/aarch64-linux-gnu/6.3.1/../../../../aarch64-linux-gnu/bin/ld: warning: libavformat.so.58, needed by ../../lib/libopencv_videoio.so.4.5.3, not found (try using -rpath or -rpath-link)
/home/midsummer/Tool/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin/../lib/gcc/aarch64-linux-gnu/6.3.1/../../../../aarch64-linux-gnu/bin/ld: warning: libavutil.so.56, needed by ../../lib/libopencv_videoio.so.4.5.3, not found (try using -rpath or -rpath-link)
/home/midsummer/Tool/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin/../lib/gcc/aarch64-linux-gnu/6.3.1/../../../../aarch64-linux-gnu/bin/ld: warning: libswscale.so.5, needed by ../../lib/libopencv_videoio.so.4.5.3, not found (try using -rpath or -rpath-link)
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_init_packet@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avformat_get_riff_video_tags@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_send_packet@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_receive_packet@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avformat_get_mov_video_tags@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_find_decoder@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_find_decoder_by_name@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_frame_alloc@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_get_name@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_hwframe_transfer_data@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_malloc@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avio_open@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avformat_alloc_context@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_sub_q@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avformat_network_init@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_packet_free@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_flush_buffers@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_find_encoder@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `sws_getContext@LIBSWSCALE_5'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_receive_frame@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_write_frame@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avformat_close_input@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_seek_frame@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `sws_freeContext@LIBSWSCALE_5'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_dict_set@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_descriptor_get_by_name@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `sws_scale@LIBSWSCALE_5'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_packet_unref@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_dict_parse_string@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_frame_get_buffer@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_freep@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avformat_find_stream_info@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_read_frame@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avformat_free_context@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_default_get_format@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_hwframe_ctx_init@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_register_all@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_free@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_hwframe_get_buffer@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_guess_sample_aspect_ratio@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avformat_new_stream@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_hwframe_constraints_free@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_hwdevice_ctx_create_derived@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_frame_unref@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_buffer_unref@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_write_trailer@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_packet_rescale_ts@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_bsf_get_by_name@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_send_frame@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_get_hw_config@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_buffer_ref@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_dict_get@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_bsf_free@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_codec_is_decoder@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avformat_open_input@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_lockmgr_register@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_packet_alloc@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_hwframe_ctx_create_derived@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_bsf_send_packet@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_bsf_alloc@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_log_set_level@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_image_get_buffer_size@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_open2@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_codec_is_encoder@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_guess_format@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_image_fill_arrays@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_bsf_receive_packet@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `sws_getCachedContext@LIBSWSCALE_5'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_codec_get_tag@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_hwdevice_get_hwframe_constraints@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_hwdevice_ctx_create@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_codec_iterate@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_log_set_callback@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_opt_set@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_codec_get_id@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avformat_write_header@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_parameters_copy@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_pix_fmt_to_codec_tag@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_hwframe_ctx_alloc@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_mallocz@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_find_input_format@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_dict_free@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_get_hw_frames_parameters@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_hwdevice_get_type_name@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avio_close@LIBAVFORMAT_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_frame_free@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_bsf_init@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_close@LIBAVCODEC_58'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `av_hwdevice_find_type_by_name@LIBAVUTIL_56'
../../lib/libopencv_videoio.so.4.5.3: undefined reference to `avcodec_get_context_defaults3@LIBAVCODEC_58'
collect2: error: ld returned 1 exit status
make[2]: *** [apps/visualisation/CMakeFiles/opencv_visualisation.dir/build.make:89: bin/opencv_visualisation] Error 1
make[1]: *** [CMakeFiles/Makefile2:3357: apps/visualisation/CMakeFiles/opencv_visualisation.dir/all] Error 2
make[1]: *** Waiting for unfinished jobs....
[ 49%] Linking CXX shared library ../../lib/libopencv_calib3d.so
[ 49%] Built target opencv_calib3d
[ 50%] Linking CXX static library ../../lib/libopencv_ts.a
[ 50%] Built target opencv_ts
make: *** [Makefile:163: all] Error 2



    


    I dont know what's wrong with it,It has confused me for a few days,I real hope someone can help me solve the prob.
I promise the the ffmpeg version match the version of opencv strictly,promising the PKG_CONFIG_PATH is right.

    


    I have tried many method like changing opencv version or ffmpeg version,recompiling the ffmpeg,changing PKG_CONFIG_PATH,coping ffmpeg pc file from /usr/local/ffmpeg/lib/pkgconfig to /usr/local/lib/pkgconfig.
I hope somebody can give some idea about how to solve this problem.