
Recherche avancée
Médias (3)
-
The Slip - Artworks
26 septembre 2011, par
Mis à jour : Septembre 2011
Langue : English
Type : Texte
-
Podcasting Legal guide
16 mai 2011, par
Mis à jour : Mai 2011
Langue : English
Type : Texte
-
Creativecommons informational flyer
16 mai 2011, par
Mis à jour : Juillet 2013
Langue : English
Type : Texte
Autres articles (41)
-
XMP PHP
13 mai 2011, parDixit Wikipedia, XMP signifie :
Extensible Metadata Platform ou XMP est un format de métadonnées basé sur XML utilisé dans les applications PDF, de photographie et de graphisme. Il a été lancé par Adobe Systems en avril 2001 en étant intégré à la version 5.0 d’Adobe Acrobat.
Étant basé sur XML, il gère un ensemble de tags dynamiques pour l’utilisation dans le cadre du Web sémantique.
XMP permet d’enregistrer sous forme d’un document XML des informations relatives à un fichier : titre, auteur, historique (...) -
Participer à sa documentation
10 avril 2011La documentation est un des travaux les plus importants et les plus contraignants lors de la réalisation d’un outil technique.
Tout apport extérieur à ce sujet est primordial : la critique de l’existant ; la participation à la rédaction d’articles orientés : utilisateur (administrateur de MediaSPIP ou simplement producteur de contenu) ; développeur ; la création de screencasts d’explication ; la traduction de la documentation dans une nouvelle langue ;
Pour ce faire, vous pouvez vous inscrire sur (...) -
Encodage et transformation en formats lisibles sur Internet
10 avril 2011MediaSPIP transforme et ré-encode les documents mis en ligne afin de les rendre lisibles sur Internet et automatiquement utilisables sans intervention du créateur de contenu.
Les vidéos sont automatiquement encodées dans les formats supportés par HTML5 : MP4, Ogv et WebM. La version "MP4" est également utilisée pour le lecteur flash de secours nécessaire aux anciens navigateurs.
Les documents audios sont également ré-encodés dans les deux formats utilisables par HTML5 :MP3 et Ogg. La version "MP3" (...)
Sur d’autres sites (6693)
-
ffmpeg failed to load audio file
14 avril 2024, par Vaishnav GhengeFailed to load audio: ffmpeg version 5.1.4-0+deb12u1 Copyright (c) Failed to load audio: ffmpeg version 5.1.4-0+deb12u1 Copyright (c) 2000-2023 the FFmpeg developers
 built with gcc 12 (Debian 12.2.0-14)
 configuration: --prefix=/usr --extra-version=0+deb12u1 --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --arch=amd64 --enable-gpl --disable-stripping --enable-gnutls --enable-ladspa --enable-libaom --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libcodec2 --enable-libdav1d --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libglslang --enable-libgme --enable-libgsm --enable-libjack --enable-libmp3lame --enable-libmysofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librabbitmq --enable-librist --enable-librubberband --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libsrt --enable-libssh --enable-libsvtav1 --enable-libtheora --enable-libtwolame --enable-libvidstab --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzimg --enable-libzmq --enable-libzvbi --enable-lv2 --enable-omx --enable-openal --enable-opencl --enable-opengl --enable-sdl2 --disable-sndio --enable-libjxl --enable-pocketsphinx --enable-librsvg --enable-libmfx --enable-libdc1394 --enable-libdrm --enable-libiec61883 --enable-chromaprint --enable-frei0r --enable-libx264 --enable-libplacebo --enable-librav1e --enable-shared
 libavutil 57. 28.100 / 57. 28.100
 libavcodec 59. 37.100 / 59. 37.100
 libavformat 59. 27.100 / 59. 27.100
 libavdevice 59. 7.100 / 59. 7.100
 libavfilter 8. 44.100 / 8. 44.100
 libswscale 6. 7.100 / 6. 7.100
 libswresample 4. 7.100 / 4. 7.100
 libpostproc 56. 6.100 / 56. 6.100
/tmp/tmpjlchcpdm.wav: Invalid data found when processing input



backend :



@app.route("/transcribe", methods=["POST"])
def transcribe():
 # Check if audio file is present in the request
 if 'audio_file' not in request.files:
 return jsonify({"error": "No file part"}), 400
 
 audio_file = request.files.get('audio_file')

 # Check if audio_file is sent in files
 if not audio_file:
 return jsonify({"error": "`audio_file` is missing in request.files"}), 400

 # Check if the file is present
 if audio_file.filename == '':
 return jsonify({"error": "No selected file"}), 400

 # Save the file with a unique name
 filename = secure_filename(audio_file.filename)
 unique_filename = os.path.join("uploads", str(uuid.uuid4()) + '_' + filename)
 # audio_file.save(unique_filename)
 
 # Read the contents of the audio file
 contents = audio_file.read()

 max_file_size = 500 * 1024 * 1024
 if len(contents) > max_file_size:
 return jsonify({"error": "File is too large"}), 400

 # Check if the file extension suggests it's a WAV file
 if not filename.lower().endswith('.wav'):
 # Delete the file if it's not a WAV file
 os.remove(unique_filename)
 return jsonify({"error": "Only WAV files are supported"}), 400

 print(f"\033[92m{filename}\033[0m")

 # Call Celery task asynchronously
 result = transcribe_audio.delay(contents)

 return jsonify({
 "task_id": result.id,
 "status": "pending"
 })


@celery_app.task
def transcribe_audio(contents):
 # Transcribe the audio
 try:
 # Create a temporary file to save the audio data
 with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
 temp_path = temp_audio.name
 temp_audio.write(contents)

 print(f"\033[92mFile temporary path: {temp_path}\033[0m")
 transcribe_start_time = time.time()

 # Transcribe the audio
 transcription = transcribe_with_whisper(temp_path)
 
 transcribe_end_time = time.time()
 print(f"\033[92mTranscripted text: {transcription}\033[0m")

 return transcription, transcribe_end_time - transcribe_start_time

 except Exception as e:
 print(f"\033[92mError: {e}\033[0m")
 return str(e)



frontend :


useEffect(() => {
 const init = () => {
 navigator.mediaDevices.getUserMedia({audio: true})
 .then((audioStream) => {
 const recorder = new MediaRecorder(audioStream);

 recorder.ondataavailable = e => {
 if (e.data.size > 0) {
 setChunks(prevChunks => [...prevChunks, e.data]);
 }
 };

 recorder.onerror = (e) => {
 console.log("error: ", e);
 }

 recorder.onstart = () => {
 console.log("started");
 }

 recorder.start();

 setStream(audioStream);
 setRecorder(recorder);
 });
 }

 init();

 return () => {
 if (recorder && recorder.state === 'recording') {
 recorder.stop();
 }

 if (stream) {
 stream.getTracks().forEach(track => track.stop());
 }
 }
 }, []);

 useEffect(() => {
 // Send chunks of audio data to the backend at regular intervals
 const intervalId = setInterval(() => {
 if (recorder && recorder.state === 'recording') {
 recorder.requestData(); // Trigger data available event
 }
 }, 8000); // Adjust the interval as needed


 return () => {
 if (intervalId) {
 console.log("Interval cleared");
 clearInterval(intervalId);
 }
 };
 }, [recorder]);

 useEffect(() => {
 const processAudio = async () => {
 if (chunks.length > 0) {
 // Send the latest chunk to the server for transcription
 const latestChunk = chunks[chunks.length - 1];

 const audioBlob = new Blob([latestChunk]);
 convertBlobToAudioFile(audioBlob);
 }
 };

 void processAudio();
 }, [chunks]);

 const convertBlobToAudioFile = useCallback((blob: Blob) => {
 // Convert Blob to audio file (e.g., WAV)
 // This conversion may require using a third-party library or service
 // For example, you can use the MediaRecorder API to record audio in WAV format directly
 // Alternatively, you can use a library like recorderjs to perform the conversion
 // Here's a simplified example using recorderjs:

 const reader = new FileReader();
 reader.onload = () => {
 const audioBuffer = reader.result; // ArrayBuffer containing audio data

 // Send audioBuffer to Flask server or perform further processing
 sendAudioToFlask(audioBuffer as ArrayBuffer);
 };

 reader.readAsArrayBuffer(blob);
 }, []);

 const sendAudioToFlask = useCallback((audioBuffer: ArrayBuffer) => {
 const formData = new FormData();
 formData.append('audio_file', new Blob([audioBuffer]), `speech_audio.wav`);

 console.log(formData.get("audio_file"));

 fetch('http://34.87.75.138:8000/transcribe', {
 method: 'POST',
 body: formData
 })
 .then(response => response.json())
 .then((data: { task_id: string, status: string }) => {
 pendingTaskIdsRef.current.push(data.task_id);
 })
 .catch(error => {
 console.error('Error sending audio to Flask server:', error);
 });
 }, []);



I was trying to pass the audio from frontend to whisper model which is in flask app


-
FFmpeg RTSP drop rate increases when frame rate is reduced
13 avril 2024, par Avishka PereraI need to read an RTSP stream, process the images individually in Python, and then write the images back to an RTSP stream. As the RTSP server, I am using Mediamtx [1]. For streaming, I am using FFmpeg [2].


I have the following code that works perfectly fine. For simplification purposes, I am streaming three generated images.


import time
import numpy as np
import subprocess

width, height = 640, 480
fps = 25
rtsp_server_address = f"rtsp://localhost:8554/mystream"

ffmpeg_cmd = [
 "ffmpeg",
 "-re",
 "-f",
 "rawvideo",
 "-pix_fmt",
 "rgb24",
 "-s",
 f"{width}x{height}",
 "-i",
 "-",
 "-r",
 str(fps),
 "-avoid_negative_ts",
 "make_zero",
 "-vcodec",
 "libx264",
 "-threads",
 "4",
 "-f",
 "rtsp",
 rtsp_server_address,
]
colors = np.array(
 [
 [255, 0, 0],
 [0, 255, 0],
 [0, 0, 255],
 ]
).reshape(3, 1, 1, 3)
images = (np.ones((3, width, height, 3)) * colors).astype(np.uint8)

if __name__ == "__main__":

 process = subprocess.Popen(ffmpeg_cmd, stdin=subprocess.PIPE)
 start = time.time()
 exported = 0
 while True:
 exported += 1
 next_time = start + exported / fps
 now = time.time()
 if next_time > now:
 sleep_dur = next_time - now
 time.sleep(sleep_dur)

 image = images[exported % 3]
 image_bytes = image.tobytes()

 process.stdin.write(image_bytes)
 process.stdin.flush()

 process.stdin.close()
 process.wait()



The issue is, that I need to run this at 10 fps because the processing step is heavy and can only afford 10 fps. Hence, as I reduce the frame rate from 25 to 10, the drop rate increases from 0% to 100%. And after a few iterations, I get a
BrokenPipeError: [Errno 32] Broken pipe
. Refer to the appendix for the complete log.

As an alternative, I can use OpenCV compiled from source with GStreamer [3], but I prefer using FFmpeg to make the shipping process simple. Since compiling OpenCV from source can be tedious and dependent on the system.


References


[1] Mediamtx (formerly rtsp-simple-server) : https://github.com/bluenviron/mediamtx


[2] FFmpeg : https://github.com/FFmpeg/FFmpeg


[3] Compile OpenCV with GStreamer : https://github.com/bluenviron/mediamtx?tab=readme-ov-file#opencv


Appendix


Creating the source stream


To instantiate the unprocessed stream, I use the following command. This streams the content of my webcam as and RTSP stream.


ffmpeg -video_size 1280x720 -i /dev/video0 -avoid_negative_ts make_zero -vcodec libx264 -r 10 -f rtsp rtsp://localhost:8554/webcam



Error log


ffmpeg version 6.1.1 Copyright (c) 2000-2023 the FFmpeg developers
 built with gcc 12.3.0 (conda-forge gcc 12.3.0-5)
 configuration: --prefix=/home/conda/feedstock_root/build_artifacts/ffmpeg_1712656518955/_h_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_plac --cc=/home/conda/feedstock_root/build_artifacts/ffmpeg_1712656518955/_build_env/bin/x86_64-conda-linux-gnu-cc --cxx=/home/conda/feedstock_root/build_artifacts/ffmpeg_1712656518955/_build_env/bin/x86_64-conda-linux-gnu-c++ --nm=/home/conda/feedstock_root/build_artifacts/ffmpeg_1712656518955/_build_env/bin/x86_64-conda-linux-gnu-nm --ar=/home/conda/feedstock_root/build_artifacts/ffmpeg_1712656518955/_build_env/bin/x86_64-conda-linux-gnu-ar --disable-doc --disable-openssl --enable-demuxer=dash --enable-hardcoded-tables --enable-libfreetype --enable-libharfbuzz --enable-libfontconfig --enable-libopenh264 --enable-libdav1d --enable-gnutls --enable-libmp3lame --enable-libvpx --enable-libass --enable-pthreads --enable-vaapi --enable-libopenvino --enable-gpl --enable-libx264 --enable-libx265 --enable-libaom --enable-libsvtav1 --enable-libxml2 --enable-pic --enable-shared --disable-static --enable-version3 --enable-zlib --enable-libopus --pkg-config=/home/conda/feedstock_root/build_artifacts/ffmpeg_1712656518955/_build_env/bin/pkg-config
 libavutil 58. 29.100 / 58. 29.100
 libavcodec 60. 31.102 / 60. 31.102
 libavformat 60. 16.100 / 60. 16.100
 libavdevice 60. 3.100 / 60. 3.100
 libavfilter 9. 12.100 / 9. 12.100
 libswscale 7. 5.100 / 7. 5.100
 libswresample 4. 12.100 / 4. 12.100
 libpostproc 57. 3.100 / 57. 3.100
Input #0, rawvideo, from 'fd:':
 Duration: N/A, start: 0.000000, bitrate: 184320 kb/s
 Stream #0:0: Video: rawvideo (RGB[24] / 0x18424752), rgb24, 640x480, 184320 kb/s, 25 tbr, 25 tbn
Stream mapping:
 Stream #0:0 -> #0:0 (rawvideo (native) -> h264 (libx264))
[libx264 @ 0x5e2ef8b01340] using cpu capabilities: MMX2 SSE2Fast SSSE3 SSE4.2 AVX FMA3 BMI2 AVX2
[libx264 @ 0x5e2ef8b01340] profile High 4:4:4 Predictive, level 2.2, 4:4:4, 8-bit
[libx264 @ 0x5e2ef8b01340] 264 - core 164 r3095 baee400 - H.264/MPEG-4 AVC codec - Copyleft 2003-2022 - http://www.videolan.org/x264.html - options: cabac=1 ref=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=4 threads=4 lookahead_threads=1 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=10 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00
Output #0, rtsp, to 'rtsp://localhost:8554/mystream':
 Metadata:
 encoder : Lavf60.16.100
 Stream #0:0: Video: h264, yuv444p(tv, progressive), 640x480, q=2-31, 10 fps, 90k tbn
 Metadata:
 encoder : Lavc60.31.102 libx264
 Side data:
 cpb: bitrate max/min/avg: 0/0/0 buffer size: 0 vbv_delay: N/A
[vost#0:0/libx264 @ 0x5e2ef8b01080] Error submitting a packet to the muxer: Broken pipe 
[out#0/rtsp @ 0x5e2ef8afd780] Error muxing a packet
[out#0/rtsp @ 0x5e2ef8afd780] video:1kB audio:0kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: unknown
frame= 1 fps=0.1 q=-1.0 Lsize=N/A time=00:00:04.70 bitrate=N/A dup=0 drop=70 speed=0.389x 
[libx264 @ 0x5e2ef8b01340] frame I:16 Avg QP: 6.00 size: 147
[libx264 @ 0x5e2ef8b01340] frame P:17 Avg QP: 9.94 size: 101
[libx264 @ 0x5e2ef8b01340] frame B:17 Avg QP: 9.94 size: 64
[libx264 @ 0x5e2ef8b01340] consecutive B-frames: 50.0% 0.0% 42.0% 8.0%
[libx264 @ 0x5e2ef8b01340] mb I I16..4: 81.3% 18.7% 0.0%
[libx264 @ 0x5e2ef8b01340] mb P I16..4: 52.9% 0.0% 0.0% P16..4: 0.0% 0.0% 0.0% 0.0% 0.0% skip:47.1%
[libx264 @ 0x5e2ef8b01340] mb B I16..4: 0.0% 5.9% 0.0% B16..8: 0.1% 0.0% 0.0% direct: 0.0% skip:94.0% L0:56.2% L1:43.8% BI: 0.0%
[libx264 @ 0x5e2ef8b01340] 8x8 transform intra:15.4% inter:100.0%
[libx264 @ 0x5e2ef8b01340] coded y,u,v intra: 0.0% 0.0% 0.0% inter: 0.0% 0.0% 0.0%
[libx264 @ 0x5e2ef8b01340] i16 v,h,dc,p: 97% 0% 3% 0%
[libx264 @ 0x5e2ef8b01340] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 0% 0% 100% 0% 0% 0% 0% 0% 0%
[libx264 @ 0x5e2ef8b01340] Weighted P-Frames: Y:52.9% UV:52.9%
[libx264 @ 0x5e2ef8b01340] ref P L0: 88.9% 0.0% 0.0% 11.1%
[libx264 @ 0x5e2ef8b01340] kb/s:8.27
Conversion failed!
Traceback (most recent call last):
 File "/home/avishka/projects/read-process-stream/minimal-ffmpeg-error.py", line 58, in <module>
 process.stdin.write(image_bytes)
BrokenPipeError: [Errno 32] Broken pipe
</module>


-
7 Ecommerce Metrics to Track and Improve in 2024
12 avril 2024, par Erin