Recherche avancée

Médias (39)

Mot : - Tags -/audio

Autres articles (99)

  • MediaSPIP 0.1 Beta version

    25 avril 2011, par

    MediaSPIP 0.1 beta is the first version of MediaSPIP proclaimed as "usable".
    The zip file provided here only contains the sources of MediaSPIP in its standalone version.
    To get a working installation, you must manually install all-software dependencies on the server.
    If you want to use this archive for an installation in "farm mode", you will also need to proceed to other manual (...)

  • Multilang : améliorer l’interface pour les blocs multilingues

    18 février 2011, par

    Multilang est un plugin supplémentaire qui n’est pas activé par défaut lors de l’initialisation de MediaSPIP.
    Après son activation, une préconfiguration est mise en place automatiquement par MediaSPIP init permettant à la nouvelle fonctionnalité d’être automatiquement opérationnelle. Il n’est donc pas obligatoire de passer par une étape de configuration pour cela.

  • L’agrémenter visuellement

    10 avril 2011

    MediaSPIP est basé sur un système de thèmes et de squelettes. Les squelettes définissent le placement des informations dans la page, définissant un usage spécifique de la plateforme, et les thèmes l’habillage graphique général.
    Chacun peut proposer un nouveau thème graphique ou un squelette et le mettre à disposition de la communauté.

Sur d’autres sites (12957)

  • Android FFmpeg - Mux encoded h264 frames from MediaCodec

    27 janvier 2019, par Bob Ross

    I’m trying to capture h264 frames from Android camera (encoded by MediaCodec) and pass them to an FFmpeg process running on the same device.

    I currently do it by writing the encoded byte arrays I receive from the MediaCodec to a file called out.h264.

    Like so :

       FileOutputStream fosVideo = new ...

       ...

       // encoder callback
       @Override
       public void onVideoData(ByteBuffer h264Buffer, MediaCodec.BufferInfo info) {
           fosVideo.write(h264Buffer);
       }

    While the h264 file is being written to is I start the FFmpeg process and provide the h264 file as input.

    ffmpeg -re -i out.h264 -c:v copy -r 30 -loglevel 48 a.mp4

    I also tried

    ffmpeg -re -framerate 25 -i out.h264 -c:v copy -r 30 -loglevel 48 a.mp4

    The FFmpeg process runs anywhere between 10 seconds to a few minutes and then stops abruptly with :

    frame=  330 fps= 29 q=31.0 size=     512kB time=00:00:10.98 bitrate= 381.8kbits/s dup=55 drop=0 speed=0.972x    
    [h264 @ 0xf1863800] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 1
    [h264 @ 0xf1863b80] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 1
    [h264 @ 0xf1863f00] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 1
    *** 1 dup!
    [h264 @ 0xf1864280] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 1
    Clipping frame in rate conversion by 0.199989
    [h264 @ 0xf1864600] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 1
    [h264 @ 0xf1862a00] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 1
    [h264 @ 0xf1862d80] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 1
    [h264 @ 0xf1863100] nal_unit_type: 1(Coded slice of a non-IDR picture), nal_ref_idc: 1
    *** 1 dup!
    Clipping frame in rate conversion by 0.199989
    *** 1 dup!
    frame=  347 fps= 29 q=31.0 size=     768kB time=00:00:11.53 bitrate= 545.5kbits/s dup=58 drop=0 speed=0.974x    
    Clipping frame in rate conversion by 0.199989
    [out_0_0 @ 0xf182e1e0] EOF on sink link out_0_0:default.
    No more output streams to write to, finishing.
    frame=  349 fps= 29 q=24.8 Lsize=     920kB time=00:00:17.68 bitrate= 426.1kbits/s dup=58 drop=0 speed=1.48x    
    video:631kB audio:282kB subtitle:0kB other streams:0kB global headers:0kB muxing overhead: 0.732886%
    Input file #0 (/storage/emulated/0/MOVIES/out.h264):
    Input stream #0:0 (video): 291 packets read (6065016 bytes); 291 frames decoded;
    Total: 291 packets (6065016 bytes) demuxed
    Input file #1 (/storage/emulated/0/MOVIES/out.aac):
    Input stream #1:0 (audio): 830 packets read (289119 bytes);
    Total: 830 packets (289119 bytes) demuxed
    Output file #0 (/storage/emulated/0/hls/a.mp4):
    Output stream #0:0 (video): 349 frames encoded; 349 packets muxed (645952 bytes);
    Output stream #0:1 (audio): 830 packets muxed (289119 bytes);
    Total: 1179 packets (935071 bytes) muxed
    291 frames successfully decoded, 0 decoding errors

    Even though the out.h264 file is still being recorded into.
    It is as if the ffmpeg process thinks that the file has ended.

    Any idea what could it be ?

  • Anatomy of an optimization : H.264 deblocking

    26 mai 2010, par Dark Shikari — H.264, assembly, development, speed, x264

    As mentioned in the previous post, H.264 has an adaptive deblocking filter. But what exactly does that mean — and more importantly, what does it mean for performance ? And how can we make it as fast as possible ? In this post I’ll try to answer these questions, particularly in relation to my recent deblocking optimizations in x264.

    H.264′s deblocking filter has two steps : strength calculation and the actual filter. The first step calculates the parameters for the second step. The filter runs on all the edges in each macroblock. That’s 4 vertical edges of length 16 pixels and 4 horizontal edges of length 16 pixels. The vertical edges are filtered first, from left to right, then the horizontal edges, from top to bottom (order matters !). The leftmost edge is the one between the current macroblock and the left macroblock, while the topmost edge is the one between the current macroblock and the top macroblock.

    Here’s the formula for the strength calculation in progressive mode. The highest strength that applies is always selected.

    If we’re on the edge between an intra macroblock and any other macroblock : Strength 4
    If we’re on an internal edge of an intra macroblock : Strength 3
    If either side of a 4-pixel-long edge has residual data : Strength 2
    If the motion vectors on opposite sides of a 4-pixel-long edge are at least a pixel apart (in either x or y direction) or the reference frames aren’t the same : Strength 1
    Otherwise : Strength 0 (no deblocking)

    These values are then thrown into a lookup table depending on the quantizer : higher quantizers have stronger deblocking. Then the actual filter is run with the appropriate parameters. Note that Strength 4 is actually a special deblocking mode that performs a much stronger filter and affects more pixels.

    One can see somewhat intuitively why these strengths are chosen. The deblocker exists to get rid of sharp edges caused by the block-based nature of H.264, and so the strength depends on what exists that might cause such sharp edges. The strength calculation is a way to use existing data from the video stream to make better decisions during the deblocking process, improving compression and quality.

    Both the strength calculation and the actual filter (not described here) are very complex if naively implemented. The latter can be SIMD’d with not too much difficulty ; no H.264 decoder can get away with reasonable performance without such a thing. But what about optimizing the strength calculation ? A quick analysis shows that this can be beneficial as well.

    Since we have to check both horizontal and vertical edges, we have to check up to 32 pairs of coefficient counts (for residual), 16 pairs of reference frame indices, and 128 motion vector values (counting x and y as separate values). This is a lot of calculation ; a naive implementation can take 500-1000 clock cycles on a modern CPU. Of course, there’s a lot of shortcuts we can take. Here’s some examples :

    • If the macroblock uses the 8×8 transform, we only need to check 2 edges in each direction instead of 4, because we don’t deblock inside of the 8×8 blocks.
    • If the macroblock is a P-skip, we only have to check the first edge in each direction, since there’s guaranteed to be no motion vector differences, reference frame differences, or residual inside of the macroblock.
    • If the macroblock has no residual at all, we can skip that check.
    • If we know the partition type of the macroblock, we can do motion vector checks only along the edges of the partitions.
    • If the effective quantizer is so low that no deblocking would be performed no matter what, don’t bother calculating the strength.

    But even all of this doesn’t save us from ourselves. We still have to iterate over a ton of edges, checking each one. Stuff like the partition-checking logic greatly complicates the code and adds overhead even as it reduces the number of checks. And in many cases decoupling the checks to add such logic will make it slower : if the checks are coupled, we can avoid doing a motion vector check if there’s residual, since Strength 2 overrides Strength 1.

    But wait. What if we could do this in SIMD, just like the actual loopfilter itself ? Sure, it seems more of a problem for C code than assembly, but there aren’t any obvious things in the way. Many years ago, Loren Merritt (pengvado) wrote the first SIMD implementation that I know of (for ffmpeg’s decoder) ; it is quite fast, so I decided to work on porting the idea to x264 to see if we could eke out a bit more speed here as well.

    Before I go over what I had to do to make this change, let me first describe how deblocking is implemented in x264. Since the filter is a loopfilter, it acts “in loop” and must be done in both the encoder and decoder — hence why x264 has it too, not just decoders. At the end of encoding one row of macroblocks, x264 goes back and deblocks the row, then performs half-pixel interpolation for use in encoding the next frame.

    We do it per-row for reasons of cache coherency : deblocking accesses a lot of pixels and a lot of code that wouldn’t otherwise be used, so it’s more efficient to do it in a single pass as opposed to deblocking each macroblock immediately after encoding. Then half-pixel interpolation can immediately re-use the resulting data.

    Now to the change. First, I modified deblocking to implement a subset of the macroblock_cache_load function : spend an extra bit of effort loading the necessary data into a data structure which is much simpler to address — as an assembly implementation would need (x264_macroblock_cache_load_deblock). Then I massively cleaned up deblocking to move all of the core strength-calculation logic into a single, small function that could be converted to assembly (deblock_strength_c). Finally, I wrote the assembly functions and worked with Loren to optimize them. Here’s the result.

    And the timings for the resulting assembly function on my Core i7, in cycles :

    deblock_strength_c : 309
    deblock_strength_mmx : 79
    deblock_strength_sse2 : 37
    deblock_strength_ssse3 : 33

    Now that is a seriously nice improvement. 33 cycles on average to perform that many comparisons–that’s absurdly low, especially considering the SIMD takes no branchy shortcuts : it always checks every single edge ! I walked over to my performance chart and happily crossed off a box.

    But I had a hunch that I could do better. Remember, as mentioned earlier, we’re reloading all that data back into our data structures in order to address it. This isn’t that slow, but takes enough time to significantly cut down on the gain of the assembly code. And worse, less than a row ago, all this data was in the correct place to be used (when we just finished encoding the macroblock) ! But if we did the deblocking right after encoding each macroblock, the cache issues would make it too slow to be worth it (yes, I tested this). So I went back to other things, a bit annoyed that I couldn’t get the full benefit of the changes.

    Then, yesterday, I was talking with Pascal, a former Xvid dev and current video hacker over at Google, about various possible x264 optimizations. He had seen my deblocking changes and we discussed that a bit as well. Then two lines hit me like a pile of bricks :

    <_skal_> tried computing the strength at least ?
    <_skal_> while it’s fresh

    Why hadn’t I thought of that ? Do the strength calculation immediately after encoding each macroblock, save the result, and then go pick it up later for the main deblocking filter. Then we can use the data right there and then for strength calculation, but we don’t have to do the whole deblock process until later.

    I went and implemented it and, after working my way through a horde of bugs, eventually got a working implementation. A big catch was that of slices : deblocking normally acts between slices even though normal encoding does not, so I had to perform extra munging to get that to work. By midday today I was able to go cross yet another box off on the performance chart. And now it’s committed.

    Sometimes chatting for 10 minutes with another developer is enough to spot the idea that your brain somehow managed to miss for nearly a straight week.

    NB : the performance chart is on a specific test clip at a specific set of settings (super fast settings) relevant to the company I work at, so it isn’t accurate nor complete for, say, default settings.

    Update : Here’s a higher resolution version of the current chart, as requested in the comments.

  • Anatomy of an optimization : H.264 deblocking

    26 mai 2010, par Dark Shikari — H.264, assembly, development, speed, x264

    As mentioned in the previous post, H.264 has an adaptive deblocking filter. But what exactly does that mean — and more importantly, what does it mean for performance ? And how can we make it as fast as possible ? In this post I’ll try to answer these questions, particularly in relation to my recent deblocking optimizations in x264.

    H.264′s deblocking filter has two steps : strength calculation and the actual filter. The first step calculates the parameters for the second step. The filter runs on all the edges in each macroblock. That’s 4 vertical edges of length 16 pixels and 4 horizontal edges of length 16 pixels. The vertical edges are filtered first, from left to right, then the horizontal edges, from top to bottom (order matters !). The leftmost edge is the one between the current macroblock and the left macroblock, while the topmost edge is the one between the current macroblock and the top macroblock.

    Here’s the formula for the strength calculation in progressive mode. The highest strength that applies is always selected.

    If we’re on the edge between an intra macroblock and any other macroblock : Strength 4
    If we’re on an internal edge of an intra macroblock : Strength 3
    If either side of a 4-pixel-long edge has residual data : Strength 2
    If the motion vectors on opposite sides of a 4-pixel-long edge are at least a pixel apart (in either x or y direction) or the reference frames aren’t the same : Strength 1
    Otherwise : Strength 0 (no deblocking)

    These values are then thrown into a lookup table depending on the quantizer : higher quantizers have stronger deblocking. Then the actual filter is run with the appropriate parameters. Note that Strength 4 is actually a special deblocking mode that performs a much stronger filter and affects more pixels.

    One can see somewhat intuitively why these strengths are chosen. The deblocker exists to get rid of sharp edges caused by the block-based nature of H.264, and so the strength depends on what exists that might cause such sharp edges. The strength calculation is a way to use existing data from the video stream to make better decisions during the deblocking process, improving compression and quality.

    Both the strength calculation and the actual filter (not described here) are very complex if naively implemented. The latter can be SIMD’d with not too much difficulty ; no H.264 decoder can get away with reasonable performance without such a thing. But what about optimizing the strength calculation ? A quick analysis shows that this can be beneficial as well.

    Since we have to check both horizontal and vertical edges, we have to check up to 32 pairs of coefficient counts (for residual), 16 pairs of reference frame indices, and 128 motion vector values (counting x and y as separate values). This is a lot of calculation ; a naive implementation can take 500-1000 clock cycles on a modern CPU. Of course, there’s a lot of shortcuts we can take. Here’s some examples :

    • If the macroblock uses the 8×8 transform, we only need to check 2 edges in each direction instead of 4, because we don’t deblock inside of the 8×8 blocks.
    • If the macroblock is a P-skip, we only have to check the first edge in each direction, since there’s guaranteed to be no motion vector differences, reference frame differences, or residual inside of the macroblock.
    • If the macroblock has no residual at all, we can skip that check.
    • If we know the partition type of the macroblock, we can do motion vector checks only along the edges of the partitions.
    • If the effective quantizer is so low that no deblocking would be performed no matter what, don’t bother calculating the strength.

    But even all of this doesn’t save us from ourselves. We still have to iterate over a ton of edges, checking each one. Stuff like the partition-checking logic greatly complicates the code and adds overhead even as it reduces the number of checks. And in many cases decoupling the checks to add such logic will make it slower : if the checks are coupled, we can avoid doing a motion vector check if there’s residual, since Strength 2 overrides Strength 1.

    But wait. What if we could do this in SIMD, just like the actual loopfilter itself ? Sure, it seems more of a problem for C code than assembly, but there aren’t any obvious things in the way. Many years ago, Loren Merritt (pengvado) wrote the first SIMD implementation that I know of (for ffmpeg’s decoder) ; it is quite fast, so I decided to work on porting the idea to x264 to see if we could eke out a bit more speed here as well.

    Before I go over what I had to do to make this change, let me first describe how deblocking is implemented in x264. Since the filter is a loopfilter, it acts “in loop” and must be done in both the encoder and decoder — hence why x264 has it too, not just decoders. At the end of encoding one row of macroblocks, x264 goes back and deblocks the row, then performs half-pixel interpolation for use in encoding the next frame.

    We do it per-row for reasons of cache coherency : deblocking accesses a lot of pixels and a lot of code that wouldn’t otherwise be used, so it’s more efficient to do it in a single pass as opposed to deblocking each macroblock immediately after encoding. Then half-pixel interpolation can immediately re-use the resulting data.

    Now to the change. First, I modified deblocking to implement a subset of the macroblock_cache_load function : spend an extra bit of effort loading the necessary data into a data structure which is much simpler to address — as an assembly implementation would need (x264_macroblock_cache_load_deblock). Then I massively cleaned up deblocking to move all of the core strength-calculation logic into a single, small function that could be converted to assembly (deblock_strength_c). Finally, I wrote the assembly functions and worked with Loren to optimize them. Here’s the result.

    And the timings for the resulting assembly function on my Core i7, in cycles :

    deblock_strength_c : 309
    deblock_strength_mmx : 79
    deblock_strength_sse2 : 37
    deblock_strength_ssse3 : 33

    Now that is a seriously nice improvement. 33 cycles on average to perform that many comparisons–that’s absurdly low, especially considering the SIMD takes no branchy shortcuts : it always checks every single edge ! I walked over to my performance chart and happily crossed off a box.

    But I had a hunch that I could do better. Remember, as mentioned earlier, we’re reloading all that data back into our data structures in order to address it. This isn’t that slow, but takes enough time to significantly cut down on the gain of the assembly code. And worse, less than a row ago, all this data was in the correct place to be used (when we just finished encoding the macroblock) ! But if we did the deblocking right after encoding each macroblock, the cache issues would make it too slow to be worth it (yes, I tested this). So I went back to other things, a bit annoyed that I couldn’t get the full benefit of the changes.

    Then, yesterday, I was talking with Pascal, a former Xvid dev and current video hacker over at Google, about various possible x264 optimizations. He had seen my deblocking changes and we discussed that a bit as well. Then two lines hit me like a pile of bricks :

    <_skal_> tried computing the strength at least ?
    <_skal_> while it’s fresh

    Why hadn’t I thought of that ? Do the strength calculation immediately after encoding each macroblock, save the result, and then go pick it up later for the main deblocking filter. Then we can use the data right there and then for strength calculation, but we don’t have to do the whole deblock process until later.

    I went and implemented it and, after working my way through a horde of bugs, eventually got a working implementation. A big catch was that of slices : deblocking normally acts between slices even though normal encoding does not, so I had to perform extra munging to get that to work. By midday today I was able to go cross yet another box off on the performance chart. And now it’s committed.

    Sometimes chatting for 10 minutes with another developer is enough to spot the idea that your brain somehow managed to miss for nearly a straight week.

    NB : the performance chart is on a specific test clip at a specific set of settings (super fast settings) relevant to the company I work at, so it isn’t accurate nor complete for, say, default settings.

    Update : Here’s a higher resolution version of the current chart, as requested in the comments.